Reznikov N, Hoac B, Buss DJ, Addison WN, Barros NMT, McKee MD. Biological stenciling of mineralization in the skeleton: local enzymatic removal of inhibitors in the extracellular matrix. Bone. 2020;138:115447.
McKee MD, Buss DJ, Reznikov N. Mineral tessellation in bone and the stenciling principle for extracellular matrix mineralization. J Struct Biol. 2022;214:107823.
Zhang J, Ma Z, Yan K, Wang Y, Yang Y, Wu X. Matrix Gla protein promotes the bone formation by up-regulating Wnt/β-Catenin signaling pathway. Front Endocrinol. 2019;10:891.
Zhang Y, Zhao L, Wang N, Li J, He F, Li X, et al. Unexpected role of matrix Gla protein in osteoclasts: inhibiting osteoclast differentiation and bone resorption. Mol Cell Biol. 2019;39:e00012–19.
CAS PubMed PubMed Central Google Scholar
Si J, Wang C, Zhang D, Wang B, Zhou Y. Osteopontin in bone metabolism and bone diseases. Med Sci Monit. 2020;26:e919159.
Shimada T, Hasegawa H, Yamazaki Y, Muto T, Hino R, Takeuchi Y, et al. FGF-23 is a potent regulator of vitamin D metabolism and phosphate homeostasis**. J Bone Min Res. 2004;19:429–35.
Lafage-Proust M-H, Magne D. Biology of bone mineralization and ectopic calcifications: the same actors for different plays. Arch Pédiatrie. 2024;31:S43–12.
Rashdan NA, Rutsch F, Kempf H, Váradi A, Lefthériotis G, MacRae VE. New perspectives on rare connective tissue calcifying diseases. Curr Opin Pharmacol. 2016;28:14–23.
Fleisch H, Bisaz S. Isolation from urine of pyrophosphate, a calcification inhibitor. Am J Physiol. 1962;203:671–5.
Kelly SJ, Dardinger DE, Butler LG. Hydrolysis of phosphonate esters catalyzed by 5’-nucleotide phosphodiesterase. Biochemistry. 1975;14:4983–8.
Terkeltaub R, Rosenbach M, Fong F, Goding J. Causal link between nucleotide pyrophosphohydrolase overactivity and increased intracellular inorganic pyrophosphate generation demonstrated by transfection of cultured fibroblasts and osteoblasts with plasma cell membrane glycoprotein-1. Relevance to calcium pyrophosphate dihydrate deposition disease. Arthritis Rheum. 1994;37:934–41.
Ferreira CR, Carpenter TO, Braddock DT. ENPP1 in blood and bone: skeletal and soft tissue diseases induced by ENPP1 deficiency. Annu Rev Pathol. 2024;19:507–40.
Jansen RS, Küçükosmanoğlu A, de Haas M, Sapthu S, Otero JA, Hegman IEM, et al. ABCC6 prevents ectopic mineralization seen in pseudoxanthoma elasticum by inducing cellular nucleotide release. Proc Natl Acad Sci U S A. 2013;110:20206–11.
CAS PubMed PubMed Central Google Scholar
Favre G, Laurain A, Aranyi T, Szeri F, Fulop K, Le Saux O, et al. The ABCC6 transporter: a new player in biomineralization. Int J Mol Sci. 2017;18:1941.
PubMed PubMed Central Google Scholar
Szeri F, Lundkvist S, Donnelly S, Engelke UFH, Rhee K, Williams CJ, et al. The membrane protein ANKH is crucial for bone mechanical performance by mediating cellular export of citrate and ATP. PLOS Genet. 2020;16:e1008884.
CAS PubMed PubMed Central Google Scholar
Szeri F, Niaziorimi F, Donnelly S, Fariha N, Tertyshnaia M, Patel D, et al. The mineralization regulator ANKH mediates cellular efflux of ATP, not pyrophosphate. J Bone Min Res. 2022;37:1024–31.
Fleisch H, Bisaz S. Mechanism of calcification: inhibitory role of pyrophosphate. Nature. 1962;195:911–911.
Sekaran S, Vimalraj S, Thangavelu L. The physiological and pathological role of tissue nonspecific alkaline phosphatase beyond mineralization. Biomolecules. 2021;11:1564.
CAS PubMed PubMed Central Google Scholar
St Hilaire C, Ziegler SG, Markello TC, Brusco A, Groden C, Gill F, et al. NT5E mutations and arterial calcifications. N Engl J Med. 2011;364:432–42.
CAS PubMed PubMed Central Google Scholar
Jin H, St Hilaire C, Huang Y, Yang D, Dmitrieva NI, Negro A, et al. Increased activity of TNAP compensates for reduced adenosine production and promotes ectopic calcification in the genetic disease ACDC. Sci Signal. 2016;9:ra121.
PubMed PubMed Central Google Scholar
Millán JL. The role of phosphatases in the initiation of skeletal mineralization. Calcif Tissue Int. 2013;93:299–306.
Beck L, Beck-Cormier S. Extracellular phosphate sensing in mammals: what do we know? J Mol Endocrinol. 2020;65:R53–63.
Villa-Bellosta R, Ravera S, Sorribas V, Stange G, Levi M, Murer H, et al. The Na+-Pi cotransporter PiT-2 (SLC20A2) is expressed in the apical membrane of rat renal proximal tubules and regulated by dietary Pi. Am J Physiol Ren Physiol. 2009;296:F691–699.
Suzuki A, Ghayor C, Guicheux J, Magne D, Quillard S, Kakita A, et al. Enhanced expression of the inorganic phosphate transporter Pit-1 is involved in BMP‐2–induced matrix mineralization in osteoblast‐like cells. J Bone Min Res. 2006;21:674–83.
Legati A, Giovannini D, Nicolas G, López-Sánchez U, Quintáns B, Oliveira JRM, et al. Mutations in XPR1 cause primary familial brain calcification associated with altered phosphate export. Nat Genet. 2015;47:579–81.
CAS PubMed PubMed Central Google Scholar
Germain DP. Pseudoxanthoma elasticum. Orphanet J Rare Dis. 2017;12:85.
PubMed PubMed Central Google Scholar
Li Q, van de Wetering K, Uitto J. Pseudoxanthoma elasticum as a paradigm of heritable ectopic mineralization disorders: pathomechanisms and treatment development. Am J Pathol. 2019;189:216–25.
PubMed PubMed Central Google Scholar
Pfau K, Lengyel I, Ossewaarde-van Norel J, van Leeuwen R, Risseeuw S, Leftheriotis G, et al. Pseudoxanthoma elasticum - genetics, pathophysiology, and clinical presentation. Prog Retin Eye Res. 2024;102:101274.
CAS PubMed PubMed Central Google Scholar
Le Saux O, Urban Z, Tschuch C, Csiszar K, Bacchelli B, Quaglino D, et al. Mutations in a gene encoding an abc transporter cause pseudoxanthoma elasticum. Nat Genet. 2000;25:223–7.
Bergen AA, Plomp AS, Schuurman EJ, Terry S, Breuning M, Dauwerse H, et al. Mutations in ABCC6 cause pseudoxanthoma elasticum. Nat Genet. 2000;25:228–31.
Ringpfeil F, Lebwohl MG, Christiano AM, Uitto J. Pseudoxanthoma elasticum: mutations in the MRP6 gene encoding a transmembrane ATP-binding cassette (ABC) transporter. Proc Natl Acad Sci U S A. 2000;97:6001–6.
CAS PubMed PubMed Central Google Scholar
Luo H, Faghankhani M, Cao Y, Uitto J, Li Q. Molecular genetics and modifier genes in pseudoxanthoma elasticum, a heritable multisystem ectopic mineralization disorder. J Invest Dermatol. 2021;141:1148–56.
Bartstra JW, Risseeuw S, de Jong PA, van Os B, Kalsbeek L, Mol C, et al. Genotype-phenotype correlation in pseudoxanthoma elasticum. Atherosclerosis. 2021;324:18–26.
Jansen RS, Duijst S, Mahakena S, Sommer D, Szeri F, Váradi A, et al. ABCC6–mediated ATP secretion by the liver is the main source of the mineralization inhibitor inorganic pyrophosphate in the systemic circulation—brief report. Arterioscler Thromb Vasc Biol. 2014;34:1985–9.
CAS PubMed PubMed Central Google Scholar
Nitschke Y, Baujat G, Botschen U, Wittkampf T, du Moulin M, Stella J, et al. Generalized arterial calcification of infancy and pseudoxanthoma elasticum can be caused by mutations in either ENPP1 or ABCC6. Am J Hum Genet. 2012;90:25–39.
CAS PubMed PubMed Central Google Scholar
Ralph D, Nitschke Y, Levine MA, Caffet M, Wurst T, Saeidian AH, et al. ENPP1 variants in patients with GACI and PXE expand the clinical and genetic heterogeneity of heritable disorders of ectopic calcification. PLoS Genet. 2022;18:e1010192.
CAS PubMed PubMed Central Google Scholar
Gorgels TGMF, Hu X, Scheffer GL, van der Wal AC, Toonstra J, de Jong PTVM, et al. Disruption of Abcc6 in the mouse: novel insight in the pathogenesis of pseudoxanthoma elasticum. Hum Mol Genet. 2005;14:1763–73.
Li Q, Kingman J, Wetering K, van de, Tannouri S, Sundberg JP, Uitto J. Abcc6 knockout rat model highlights the role of liver in PPi homeostasis in pseudoxanthoma elasticum. J Invest Dermatol. 2017;137:1025–32.
Comments (0)