Burger EH, Klein-Nulend J. Mechanotransduction in bone–role of the lacuno-canalicular network. FASEB J. 1999. 13 Suppl: S101-12. https://doi.org/10.1096/fasebj.13.9001.s101
Klein-Nulend J, Bakker AD, Bacabac RG, Vatsa A, Weinbaum S. Mechanosensation and transduction in osteocytes. Bone. 2013;54:182–90. https://doi.org/10.1016/j.bone.2012.10.013.
Article PubMed CAS Google Scholar
Choi JUA, Kijas AW, Lauko J, Rowan AE. The mechanosensory role of osteocytes and implications for bone health and disease States. Front Cell Dev Biol. 2021;9:770143. https://doi.org/10.3389/fcell.2021.770143.
Sang W, Ural A. Influence of osteocyte lacunar-canalicular morphology and network architecture on osteocyte mechanosensitivity. Curr Osteoporos Rep. 2023;21:401–13. https://doi.org/10.1007/s11914-023-00792-9.
Li X, Kordsmeier J, Xiong J. New advances in osteocyte mechanotransduction. Curr Osteoporos Rep. 2021;19:101–06. https://doi.org/10.1007/s11914-020-00650-y.
Article PubMed PubMed Central Google Scholar
Jin J, Bakker AD, Wu G, Klein-Nulend J, Jaspers RT. Physicochemical niche conditions and mechanosensing by osteocytes and myocytes. Curr Osteoporos Rep. 2019;17:235–49. https://doi.org/10.1007/s11914-019-00522-0.
Article PubMed PubMed Central Google Scholar
Jin J, Jaspers RT, Wu G, Korfage JAM, Klein-Nulend J, Bakker AD. Shear stress modulates osteoblast cell and nucleus morphology and volume. Int J Mol Sci. 2020;21:8361. https://doi.org/10.3390/ijms21218361.
Article PubMed CAS PubMed Central Google Scholar
Jin J, Zandieh-Doulabi B. Low, but not high, pulsating fluid shear stress affects matrix extracellular phosphoglycoprotein expression, mainly via integrin beta subunits in pre-osteoblasts. Curr Issues Mol Biol. 2024;46:12428–41. https://doi.org/10.3390/cimb46110738.
Article PubMed CAS PubMed Central Google Scholar
Geoghegan IP, Hoey DA, McNamara LM. Integrins in osteocyte biology and mechanotransduction. Curr Osteoporos Rep. 2019;17:195–206. https://doi.org/10.1007/s11914-019-00520-2.
Cao W, Helder MN, Bravenboer N, Wu G, Jin J, Ten Bruggenkate CM, Klein-Nulend J, Schulten E. Is there a governing role of osteocytes in bone tissue regeneration? Curr Osteoporos Rep. 2020;18:541–50. https://doi.org/10.1007/s11914-020-00610-6.
Article PubMed PubMed Central Google Scholar
Sroga GE, Karim L, Colon W, Vashishth D. Biochemical characterization of major bone-matrix proteins using nanoscale-size bone samples and proteomics methodology. Mol Cell Proteom. 2011;10. https://doi.org/10.1074/mcp.M110.006718. M110.006718.
Bhattarai HK, Shrestha S, Rokka K, Shakya R. Vitamin d, calcium, parathyroid hormone, and sex steroids in bone health and effects of aging. J Osteoporos. 2020;2020: 9324505. https://doi.org/10.1155/2020/9324505
Carvalho MS, Cabral JMS, da Silva CL, Vashishth D. Bone matrix non-collagenous proteins in tissue engineering: creating new bone by mimicking the extracellular matrix. Polym (Basel). 2021;13:1095. https://doi.org/10.3390/polym13071095.
Hulmes DJS. Collagen diversity, synthesis and assembly. Collagen. Struct Mech. 2008;15–47. https://doi.org/10.1007/978-0-387-73906-9_2.
Kamml J, Ke CY, Acevedo C, Kammer DS. The influence of ages and enzymatic cross-links on the mechanical properties of collagen fibrils. J Mech Behav Biomed Mater. 2023;143:105870. https://doi.org/10.1016/j.jmbbm.2023.105870.
Article PubMed CAS PubMed Central Google Scholar
Bailey AJ, Paul RG, Knott L. Mechanisms of maturation and ageing of collagen. Mech Ageing Dev. 1998;106:1–56. https://doi.org/10.1016/s0047-6374(98)00119-5.
Article PubMed CAS Google Scholar
Depalle B, Qin Z, Shefelbine SJ, Buehler MJ. Influence of cross-link structure, density and mechanical properties in the mesoscale deformation mechanisms of collagen fibrils. J Mech Behav Biomed Mater. 2015;52:1–13. https://doi.org/10.1016/j.jmbbm.2014.07.008.
Article PubMed PubMed Central Google Scholar
Bala Y, Depalle B, Douillard T, Meille S, Clement P, Follet H, Chevalier J, Boivin G. Respective roles of organic and mineral components of human cortical bone matrix in micromechanical behavior: an instrumented indentation study. J Mech Behav Biomed Mater. 2011;4:1473–82. https://doi.org/10.1016/j.jmbbm.2011.05.017.
Article PubMed CAS Google Scholar
Eyre DR, Dickson IR, Van Ness K. Collagen cross-linking in human bone and articular cartilage. Age-related changes in the content of mature Hydroxypyridinium residues. Biochem J. 1988;252:495–500. https://doi.org/10.1042/bj2520495.
Article PubMed CAS PubMed Central Google Scholar
Kamml J, Ke CY, Acevedo C, Kammer DS. The influence of ages and enzymatic cross-links on the mechanical properties of collagen fibrils. JMech Behav Biomed Mater 2023; 143;: 105870. https://doi.org/10.1016/j.jmbbm
Gao Q, Jiang Y, Zhou D, Li G, Han Y, Yang J, Xu K, Jing Y, Bai L, Geng Z, Zhang H, Zhou G, Zhu M, Ji N, Han R, Zhang Y, Li Z, Wang C, Hu Y, Shen H, Wang G, Shi Z, Han Q, Chen X, Su J. Advanced glycation end products mediate biomineralization disorder in diabetic bone disease. Cell Rep Med. 2024;5:101694. https://doi.org/10.1016/j.xcrm.2024.101694.
Article PubMed CAS PubMed Central Google Scholar
Wang X, Shen X, Li X, Agrawal CM. Age-related changes in the collagen network and toughness of bone. Bone. 2002;31:1–7. https://doi.org/10.1016/s8756-3282(01)00697-4.
Sell DR, Monnier VM. Structure Elucidation of a senescence cross-link from human extracellular matrix. Implication of Pentoses in the aging process. J Biol Chem. 1989;264:21597–602. https://doi.org/10.1016/S0021-9258(20)88225-8.
Article PubMed CAS Google Scholar
Odetti P, Rossi S, Monacelli F, Poggi A, Cirnigliaro M, Federici M, Federici A. Advanced glycation end products and bone loss during aging. Ann N Y Acad Sci. 2005;1043:710–7. https://doi.org/10.1196/annals.1333.082.
Article PubMed CAS Google Scholar
Nyman JS, Roy A, Acuna RL, Gayle HJ, Reyes MJ, Tyler JH, Dean DD, Wang X. Age-related effect on the concentration of collagen crosslinks in human osteonal and interstitial bone tissue. Bone. 2006;39:1210–7. https://doi.org/10.1016/j.bone.2006.06.026.
Article PubMed CAS PubMed Central Google Scholar
Karim L, Tang SY, Sroga GE, Vashishth D. Differences in non-enzymatic glycation and collagen cross-links between human cortical and cancellous bone. Osteoporos Int. 2013;24:2441–7. https://doi.org/10.1007/s00198-013-2319-4.
Article PubMed CAS PubMed Central Google Scholar
Andriotis OG, Elsayad K, Smart DE, Nalbach M, Davies DE, Thurner PJ. Hydration and Nanomechanical changes in collagen fibrils bearing advanced glycation end-products. Biomed Opt Express. 2019;10:1841–55. https://doi.org/10.1364/BOE.10.001841.
Article PubMed CAS PubMed Central Google Scholar
Kamml J, Acevedo C, Kammer DS. Advanced-glycation endproducts: how cross-linking properties affect the collagen fibril behavior. J Mech Behav Biomed Mater. 2023;148:106198. https://doi.org/10.1016/j.jmbbm.2023.106198.
Article PubMed CAS PubMed Central Google Scholar
Cole JH, van der Meulen MC. Whole bone mechanics and bone quality. Clin Orthop Relat Res. 2011;469:2139–49. https://doi.org/10.1007/s11999-011-1784-3.
Article PubMed PubMed Central Google Scholar
Katayama Y, Celic S, Nagata N, Martin TJ, Findlay DM. Nonenzymatic glycation of type i collagen modifies interaction with Umr 201-10b preosteoblastic cells. Bone. 1997;21:237–42. https://doi.org/10.1016/s8756-3282(97)00128-2.
Article PubMed CAS Google Scholar
Alikhani M, Alikhani Z, Boyd C, MacLellan CM, Raptis M, Liu R, Pischon N, Trackman PC, Gerstenfeld L, Graves DT. Advanced glycation end products stimulate osteoblast apoptosis via the map kinase and cytosolic apoptotic pathways. Bone. 2007;40:345–53. https://doi.org/10.1016/j.bone.2006.09.011.
Comments (0)