Statistics Bureau of Japan. Statistical topics. https://www.stat.go.jp/data/topics/topi1420.html. Accessed 6 Jan 2025.
Ministry of Health, Labour and Welfare. Overview of the 2020 patient survey. https://www.mhlw.go.jp/toukei/saikin/hw/kanja/20/index.html. Accessed 6 Jan 2025.
Ministry of Health, Labour and Welfare. Overview of the results of the 2023 national health and nutrition survey. https://www.mhlw.go.jp/stf/newpage_45540.html. Accessed 6 Jan 2025.
Zouhal H, Rhibi F, Salhi A, Jayavel A, Hackney AC, Saeidi A, et al. The effects of exercise training on plasma volume variations: a systematic review. Int J Sports Med. 2023;44(6):406–19. https://doi.org/10.1055/a-1667-6624.
Delfan M, Juybari RA, Gorgani-Firuzjaee S, Nielsen JH, Delfan N, Laher I, et al. High-intensity interval training improves cardiac function by miR-206 dependent HSP60 induction in diabetic rats. Front Cardiovasc Med. 2022;9:927956. https://doi.org/10.3389/fcvm.2022.927956.
Article CAS PubMed PubMed Central Google Scholar
Levine JA. Nonexercise activity thermogenesis (NEAT): environment and biology. Am J Physiol Endocrinol Metab. 2004;286:E675–85. https://doi.org/10.1152/ajpendo.00562.2003.
Article CAS PubMed Google Scholar
Saeidi A, Soltani M, Daraei A, Nohbaradar H, Mosalman Haghighi M, Khosravi N, et al. The effects of aerobic-resistance training and broccoli supplementation on plasma dectin-1 and insulin resistance in males with type 2 diabetes. Nutrients. 2021;13(9):3144. https://doi.org/10.3390/nu13093144.
Article CAS PubMed PubMed Central Google Scholar
Tayebi SM, Hasannezhad P, Saeidi A, Fadaei MR. Intense circuit resistance training along with Zataria multiflora supplementation reduced plasma retinol binding protein-4 and tumor necrosis factor-α in postmenopausal females. Jundishapur J Nat Pharm Prod. 2016;13(2):e38578. https://doi.org/10.17795/jjnpp.38578.
Saeidi A, Nouri-Habashi A, Razi O, Ataeinosrat A, Rahmani H, Shirzad Mollabashi S, et al. Astaxanthin supplemented with high-intensity functional training decreases adipokines levels and cardiovascular risk factors in men with obesity. Nutrients. 2023;15(2):286. https://doi.org/10.3390/nu15020286.
Article CAS PubMed PubMed Central Google Scholar
Saeidi A, Jabbour G, Ahmadian M, Abbassi-Daloii A, Malekian F, Hackney AC, et al. Independent and combined effects of antioxidant supplementation and circuit resistance training on selected adipokines in postmenopausal women. Front Physiol. 2019;10:484. https://doi.org/10.3389/fphys.2019.00484.
Article PubMed PubMed Central Google Scholar
Hirakawa K, Nakayama A, Saitoh M, Arimitsu T, Iwai K, Hori K, et al. Physical function examination at intensive care unit as predictive indicators for hospitalization-associated disability in patients after cardiovascular surgery. Rev Cardiovasc Med. 2022;23:77. https://doi.org/10.31083/j.rcm2302077.
Kortebein P, Ferrando A, Lombeida J, Wolfe R, Evans WJ. Effect of 10 days of bed rest on skeletal muscle in healthy older adults. JAMA. 2007;297:1772–4. https://doi.org/10.1001/jama.297.16.1772-b.
Article CAS PubMed Google Scholar
Puthucheary ZA, Rawal J, McPhail M, Connolly B, Ratnayake G, Chan P, et al. Acute skeletal muscle wasting in critical illness. JAMA. 2013;310:1591–600. https://doi.org/10.1001/jama.2013.278481.
Article CAS PubMed Google Scholar
Marusic U, Narici M, Simunic B, Pisot R, Ritzmann R. Nonuniform loss of muscle strength and atrophy during bed rest: a systematic review. J Appl Physiol (1985). 2021;131:194–206. https://doi.org/10.1152/japplphysiol.00363.2020.
Nomura T, Ishiguro T, Ohira M, Oka H, Ikeda Y. Isometric knee extension force in Japanese type 2 diabetic patients without apparent diabetic polyneuropathy: data from the multicenter survey of the isometric lower extremity strength in type 2 diabetes study. Sage Open Med. 2019;7:2050312118823412. https://doi.org/10.1177/2050312118823412.
Article PubMed PubMed Central Google Scholar
Park SW, Goodpaster BH, Strotmeyer ES, Kuller LH, Broudeau R, Kammerer C, et al. Accelerated loss of skeletal muscle strength in older adults with type 2 diabetes: the health, aging, and body composition study. Diabetes Care. 2007;30:1507–12. https://doi.org/10.2337/dc06-2537.
Park SW, Goodpaster BH, Lee JS, Kuller LH, Boudreau R, de Rekeneire N, et al. Excessive loss of skeletal muscle mass in older adults with type 2 diabetes. Diabetes Care. 2009;32:1993–7. https://doi.org/10.2337/dc09-0264.
Article PubMed PubMed Central Google Scholar
DeFronzo RA, Ferrannini E, Groop L, Henry RR, Herman WH, Holst JJ, et al. Type 2 diabetes mellitus. Nat Rev Dis Primers. 2015;1:15019. https://doi.org/10.1038/nrdp.2015.19.
Vaz GF, Freire FF, Gonçalves HM, de Aviz MAB, Martins WR, Durigan JLQ. Intra- and inter-rater reliability, agreement, and minimal detectable change of the handheld dynamometer in individuals with symptomatic hip osteoarthritis. PLoS ONE. 2023;18:e0278086. https://doi.org/10.1371/journal.pone.0278086.
Article CAS PubMed PubMed Central Google Scholar
Di Girolamo FG, Fiotti N, Milanović Z, Situlin R, Mearelli F, Vinci P, et al. The aging muscle in experimental bed rest: a systematic review and meta-analysis. Front Nutr. 2021;8:633987. https://doi.org/10.3389/fnut.2021.633987.
Article PubMed PubMed Central Google Scholar
Gaur K, Mohapatra L, Wal P, Parveen A, Kumar S, Gupta V. Deciphering the mechanisms and effects of hyperglycemia on skeletal muscle atrophy. Metabol Open. 2024;24:100332. https://doi.org/10.1016/j.metop.2024.100332.
Article CAS PubMed PubMed Central Google Scholar
Wang T, Feng X, Zhou J, Gong H, Xia S, Wei Q, et al. Type 2 diabetes mellitus is associated with increased risks of sarcopenia and pre-sarcopenia in Chinese elderly. Sci Rep. 2016;6:38937. https://doi.org/10.1038/srep38937.
Article CAS PubMed PubMed Central Google Scholar
Mori H, Kuroda A, Yoshida S, Yasuda T, Umayahara Y, Shimizu S, et al. High prevalence and clinical impact of dynapenia and sarcopenia in Japanese patients with type 1 and type 2 diabetes: findings from the impact of diabetes mellitus on dynapenia study. J Diabetes Investig. 2021;12:1050–9. https://doi.org/10.1111/jdi.13436.
Article CAS PubMed Google Scholar
Hirata Y, Nomura K, Senga Y, Okada Y, Kobayashi K, Okamoto S, et al. Hyperglycemia induces skeletal muscle atrophy via a WWP1/KLF15 axis. JCI Insight. 2019;4:e124952. https://doi.org/10.1172/jci.insight.124952.
Article PubMed PubMed Central Google Scholar
Kataoka H, Miyatake N, Kitayama N, Murao S, Tanaka S. An exploratory study of relationship between lower-limb muscle mass and diabetic polyneuropathy in patients with type 2 diabetes. J Diabetes Metab Disord. 2020;19:281–7. https://doi.org/10.1007/s40200-020-00505-4.
Article CAS PubMed PubMed Central Google Scholar
Park SW, Goodpaster BH, Strotmeyer ES, de Rekeneire N, Harris TB, Schwartz AV, et al. Decreased muscle strength and quality in older adults with type 2 diabetes: the health, aging, and body composition study. Diabetes. 2006;55:1813–8. https://doi.org/10.2337/db05-1183.
Article CAS PubMed Google Scholar
Andersen H, Nielsen S, Mogensen CE, Jakobsen J. Muscle strength in type 2 diabetes. Diabetes. 2004;53(6):1543–8. https://doi.org/10.2337/diabetes.53.6.1543.
Article CAS PubMed Google Scholar
Pišot R, Marusic U, Biolo G, Mazzucco S, Lazzer S, Grassi B, et al. Greater loss in muscle mass and function but smaller metabolic alterations in older compared with younger men following 2 weeks of bed rest and recovery. J Appl Physiol (1985). 2016;120:922–9. https://doi.org/10.1152/japplphysiol.00858.2015.
Article CAS PubMed Google Scholar
Kanazawa Y, Ikegami K, Sujino M, Koinuma S, Nagano M, Oi Y, et al. Effects of aging on basement membrane of the soleus muscle during recovery following disuse atrophy in rats. Exp Gerontol. 2017;98:153–61. https://doi.org/10.1016/j.exger.2017.08.014.
Comments (0)