The multifunctional role of bovine colostrum in managing diabetes: clinical insights and potential therapeutic effects

Deshpande AD, Harris-Hayes M, Schootman M. Epidemiology of diabetes and diabetes-Related complications. Phys Ther. 2008;88:1254–64. https://doi.org/10.2522/ptj.20080020.

Article  Google Scholar 

Atkinson MA, Eisenbarth GS, Michels AW. Type 1 diabetes. Lancet. 2014;383:69–82. https://doi.org/10.1016/S0140-6736(13)60591-7.

Article  Google Scholar 

Ong KL, Stafford LK, McLaughlin SA, Boyko EJ, Vollset SE, Smith AE, Dalton BE, Duprey J, Cruz JA, Hagins H, et al. Global, regional, and National burden of diabetes from 1990 to 2021, with projections of prevalence to 2050: A systematic analysis for the global burden of disease study 2021. Lancet. 2023;402:203–34. https://doi.org/10.1016/S0140-6736(23)01301-6.

Article  Google Scholar 

DeFronzo RA, Ferrannini E, Groop L, Henry RR, Herman WH, Holst JJ, Hu FB, Kahn CR, Raz I, Shulman GI, et al. Type 2 diabetes mellitus. Nat Rev Dis Primer. 2015;1:15019. https://doi.org/10.1038/nrdp.2015.19.

Article  Google Scholar 

Katsarou A, Gudbjörnsdottir S, Rawshani A, Dabelea D, Bonifacio E, Anderson BJ, Jacobsen LM, Schatz DA, Lernmark Å. Type 1 diabetes mellitus. Nat Rev Dis Primer. 2017;3:17016. https://doi.org/10.1038/nrdp.2017.16.

Article  Google Scholar 

Ahmad E, Lim S, Lamptey R, Webb DR, Davies MJ. Type 2 diabetes. Lancet. 2022;400:1803–20. https://doi.org/10.1016/S0140-6736(22)01655-5.

Article  Google Scholar 

Buchanan TA, Xiang AH. Gestational diabetes mellitus. J Clin Invest. 2005;115:485–91. https://doi.org/10.1172/JCI200524531.

Article  CAS  Google Scholar 

Catalano PM. Trying to understand gestational diabetes. Diabet Med. 2014;31:273–81. https://doi.org/10.1111/dme.12381.

Article  CAS  Google Scholar 

Božičević S, Vučić Lovrenčić M, Smirčić Duvnjak L. Diagnostic challenges of diabetic kidney disease. Biochem Med. 2023;33:227–41. https://doi.org/10.11613/BM.2023.030501.

Article  Google Scholar 

Marín-Peñalver JJ, Martín-Timón I, Sevillano-Collantes C, Cañizo-Gómez. F.J.D. Update on the treatment of type 2 diabetes mellitus. World J Diabetes. 2016;7:354. https://doi.org/10.4239/wjd.v7.i17.354.

Article  Google Scholar 

Arslan A, Kaplan M, Duman H, Bayraktar A, Ertürk M, Henrick BM, Frese SA, Karav S. Bovine colostrum and its potential for human health and nutrition. Front Nutr. 2021;8:651721. https://doi.org/10.3389/fnut.2021.651721.

Article  CAS  Google Scholar 

Silva FG, Silva SR, Pereira AMF, Cerqueira JL, Conceição C. A comprehensive review of bovine colostrum components and selected aspects regarding their impact on neonatal calf physiology. Animals. 2024;14:1130. https://doi.org/10.3390/ani14071130.

Article  Google Scholar 

Yalçıntaş YM, Duman H, Rocha JM, Bartkiene E, Karav S, Ozogul F. Role of bovine colostrum against various diseases. Food Biosci. 2024;61:104818. https://doi.org/10.1016/j.fbio.2024.104818.

Article  CAS  Google Scholar 

Playford RJ, Weiser MJ. Bovine colostrum: its constituents and uses. Nutrients. 2021;13:265. https://doi.org/10.3390/nu13010265.

Article  CAS  Google Scholar 

Kehoe SI, Jayarao BM, Heinrichs AJ. A survey of bovine colostrum composition and colostrum management practices on Pennsylvania dairy farms. J Dairy Sci. 2007;90:4108–16. https://doi.org/10.3168/jds.2007-0040.

Article  CAS  Google Scholar 

Borad SG, Singh AK, Colostrum Immunoglobulins. Processing, preservation and application aspects. Int Dairy J. 2018;85:201–10. https://doi.org/10.1016/j.idairyj.2018.05.016.

Article  CAS  Google Scholar 

Coşkun N, Sarıtaş S, Jaouhari Y, Bordiga M, Karav S. The impact of freeze drying on bioactivity and physical properties of food products. Appl Sci. 2024;14:9183. https://doi.org/10.3390/app14209183.

Article  CAS  Google Scholar 

Kim JH, Jung WS, Choi N-J, Kim D-O, Shin D-H, Kim YJ. Health-Promoting effects of bovine colostrum in type 2 diabetic patients can reduce blood glucose, cholesterol, triglyceride and ketones. J Nutr Biochem. 2009;20:298–303. https://doi.org/10.1016/j.jnutbio.2008.04.002.

Article  CAS  Google Scholar 

Yalçıntaş YM, Duman H, López JMM, Portocarrero ACM, Lombardo M, Khallouki F, Koch W, Bordiga M, El-Seedi H, Raposo A, et al. Revealing the potency of growth factors in bovine colostrum. Nutrients. 2024;16:2359. https://doi.org/10.3390/nu16142359.

Article  CAS  Google Scholar 

Lınehan K, Ross RP, Stanton C. Bovine colostrum for veterinary and human health applications: A critical review. Annual Rev Food Sci Technol. 2023;14(1):387–410. https://doi.org/10.1146/annurev-food-060721-014650.

Article  Google Scholar 

Ghosh S, Iacucci M. Diverse immune effects of bovine colostrum and benefits in human health and disease. Nutrients. 2021;13:3798. https://doi.org/10.3390/nu13113798.

Article  CAS  Google Scholar 

Mehra R, Garhwal R, Sangwan K, Guiné RPF, Lemos ET, Buttar HS, Visen PKS, Kumar N, Bhardwaj A, Kumar H. Insights into the research trends on bovine colostrum: beneficial health perspectives with special reference to manufacturing of functional foods and feed supplements. Nutrients. 2022;14:659. https://doi.org/10.3390/nu14030659.

Article  CAS  Google Scholar 

Karav S, Le Parc A, De Leite Nobrega JM, Frese SA, Kirmiz N, Block DE, Barile D, Mills DA. Oligosaccharides released from milk glycoproteins are selective growth substrates for Infant-Associated bifidobacteria. Appl Environ Microbiol. 2016;82:3622–30. https://doi.org/10.1128/AEM.00547-16.

Article  CAS  Google Scholar 

Pekdemir B, Karav S. Exploring the diverse biological significance and roles of fucosylated oligosaccharides. Front Mol Biosci. 2024;11:1403727. https://doi.org/10.3389/fmolb.2024.1403727.

Article  CAS  Google Scholar 

Kaplan M, et al. Production of bovine colostrum for human consumption to improve health. Front Pharmacol. 2022;12:796824. https://doi.org/10.3389/fphar.2021.796824.

Article  CAS  Google Scholar 

Gubertı M, et al. Bovine colostrum applications in sick and healthy people: a systematic review. Nutrients. 2021;13(7):2194. https://doi.org/10.3390/nu13072194.

Article  CAS  Google Scholar 

Tikhonov S, Tikhonova N, Gette I, Sokolova K, Danilova I. Antihyperglycemic activity of colostrum peptides. Foods Raw Mater. 2023;12:124–32. https://doi.org/10.21603/2308-4057-2024-1-586.

Article  CAS  Google Scholar 

Prattichizzo F, De Nigris V, Mancuso E, Spiga R, Giuliani A, Matacchione G, Lazzarini R, Marcheselli F, Recchioni R, Testa R, et al. Short-Term sustained hyperglycaemia fosters an archetypal Senescence-Associated secretory phenotype in endothelial cells and macrophages. Redox Biol. 2018;15:170–81. https://doi.org/10.1016/j.redox.2017.12.001.

Article  CAS  Google Scholar 

Giacco F, Brownlee M. Oxidative stress and diabetic complications. Circ Res. 2010;107:1058–70. https://doi.org/10.1161/CIRCRESAHA.110.223545.

Article  CAS  Google Scholar 

Robertson RP, Zhou H, Zhang T, Harmon JS. Chronic oxidative stress as a mechanism for glucose toxicity of the Beta cell in type 2 diabetes. Cell Biochem Biophys. 2007;48:139–46. https://doi.org/10.1007/s12013-007-0026-5.

Article  CAS  Google Scholar 

Styskal J, Van Remmen H, Richardson A, Salmon AB. Oxidative stress and diabetes: what can we learn about insulin resistance from antioxidant mutant mouse models?? Free Radic Biol Med. 2012;52:46–58. https://doi.org/10.1016/j.freeradbiomed.2011.10.441.

Article  CAS  Google Scholar 

Singh VP, Bali A, Singh N, Jaggi AS. Advanced glycation end products and diabetic complications. Korean J Physiol Pharmacol. 2014;18:1. https://doi.org/10.4196/kjpp.2014.18.1.1.

Article  CAS  Google Scholar 

Figueroa-Romero C, Sadidi M, Feldman EL. Mechanisms of disease: the oxidative stress theory of diabetic neuropathy. Rev Endocr Metab Disord. 2008;9:301–14. https://doi.org/10.1007/s11154-008-9104-2.

Article  CAS  Google Scholar 

Newsholme P, Haber EP, Hirabara SM, Rebelato ELO, Procopio J, Morgan D, Oliveira-Emilio HC, Carpinelli AR, Curi R. Diabetes associated cell stress and dysfunction: role of mitochondrial and Non‐mitochondrial ROS production and activity. J Physiol. 2007;583:9–24. https://doi.org/10.1113/jphysiol.2007.135871.

Article  CAS  Google Scholar 

Holley CT, Duffy CM, Butterick TA, Long EK, Lindsey ME, Cabrera JA, Ward HB, McFalls EO, Kelly RF. Expression of uncoupling Protein-2 remains increased within hibernating myocardium despite successful coronary artery bypass

Comments (0)

No login
gif