Eccles, J. C., Ito, M. & Szentágothai, J. The Cerebellum as a Neuronal Machine (Springer, 1967).
Cisek, P. Evolution of behavioural control from chordates to primates. Philos. Trans. R. Soc. Lond. B Biol. Sci. 377, 20200522 (2022). This review discusses neural function through the lens of evolutionary transitions that require novel computations.
Shadmehr, R. & Mussa-Ivaldi S. Biological Learning and Control (MIT Press, 2023). This book provides an invaluable introduction to computational approaches to studying biological motor control.
Holmes, G. The Croonian Lectures on the clinical symptoms of cerebellar disease and their interpretation. Lecture I. 1922. Cerebellum 6, 142–147 (2007). This work presents a fascinating and thorough description of motor deficits that emerged in World War I soldiers who suffered gunshot wounds to the cerebellum.
Shadmehr, R. Population coding in the cerebellum: a machine learning perspective. J. Neurophysiol. 124, 2022–2051 (2020).
Article PubMed PubMed Central Google Scholar
Spong, M. W. & Fujita, M. in The Impact of Control Technology: Overview, Success Stories, and Research Challenges (eds Samad, T. and Annaswamy, A.) 49–56 (IEEE Control Systems Society, 2011).
Wolpert, D. M. & Miall, R. C. Forward models for physiological motor control. Neural Netw. 9, 1265–1279 (1996). This paper beautifully describes how forward models can be used to solve many motor control problems common in biological systems.
Wolpert, D. M., Miall, R. C. & Kawato, M. Internal models in the cerebellum. Trends Cogn. Sci. 2, 338–347 (1998).
Article CAS PubMed Google Scholar
Shadmehr, R., Smith, M. A. & Krakauer, J. W. Error correction, sensory prediction, and adaptation in motor control. Annu. Rev. Neurosci. 33, 89–108 (2010).
Article CAS PubMed Google Scholar
Cullen, K. E. Internal models of self-motion: neural computations by the vestibular cerebellum. Trends Neurosci. 46, 986–1002 (2023).
Article CAS PubMed PubMed Central Google Scholar
Ohyama, T., Nores, W. L., Murphy, M. & Mauk, M. D. What the cerebellum computes. Trends Neurosci. 26, 222–227 (2003). This perspective article proposes that feedforward control principles underlying DEC could be extended to other motor control domains.
Article CAS PubMed Google Scholar
Raymond, J. L., Lisberger, S. G. & Mauk, M. D. The cerebellum: a neuronal learning machine? Science 272, 1126–1131 (1996).
Article CAS PubMed Google Scholar
Bastian, A. J. Learning to predict the future: the cerebellum adapts feedforward movement control. Curr. Opin. Neurobiol. 16, 645–649 (2006).
Article CAS PubMed Google Scholar
McCormick, D. A. & Thompson, R. F. Cerebellum: essential involvement in the classically conditioned eyelid response. Science 223, 296–299 (1984).
Article CAS PubMed Google Scholar
Moyer, J. R., Deyo, R. A. & Disterhoft, J. F. Hippocampectomy disrupts trace eye-blink conditioning in rabbits. Behav. Neurosci. 129, 523–532 (2015).
Kalmbach, B. E., Ohyama, T., Kreider, J. C., Riusech, F. & Mauk, M. D. Interactions between prefrontal cortex and cerebellum revealed by trace eyelid conditioning. Learn. Mem. 16, 86–95 (2009).
Article PubMed PubMed Central Google Scholar
Medina, J. F., Nores, W. L., Ohyama, T. & Mauk, M. D. Mechanisms of cerebellar learning suggested by eyelid conditioning. Curr. Opin. Neurobiol. 10, 717–724 (2000).
Article CAS PubMed Google Scholar
Jirenhed, D.-A., Bengtsson, F. & Hesslow, G. Acquisition, extinction, and reacquisition of a cerebellar cortical memory trace. J. Neurosci. 27, 2493–2502 (2007).
Article CAS PubMed PubMed Central Google Scholar
Jirenhed, D.-A. & Hesslow, G. Are Purkinje cell pauses drivers of classically conditioned blink responses? Cerebellum 15, 526–534 (2016).
Halverson, H. E., Khilkevich, A. & Mauk, M. D. Relating cerebellar Purkinje cell activity to the timing and amplitude of conditioned eyelid responses. J. Neurosci. 35, 7813–7832 (2015).
Article CAS PubMed PubMed Central Google Scholar
Ten Brinke, M. M. et al. Dynamic modulation of activity in cerebellar nuclei neurons during Pavlovian eyeblink conditioning in mice. eLife 6, e28132 (2017).
Article PubMed PubMed Central Google Scholar
Mauk, M. D. & Buonomano, D. V. The neural basis of temporal processing. Annu. Rev. Neurosci. 27, 307–340 (2004).
Article CAS PubMed Google Scholar
Rasmussen, A., Jirenhed, D.-A., Wetmore, D. Z. & Hesslow, G. Changes in complex spike activity during classical conditioning. Front. Neural Circuits 8, 90 (2014).
Article PubMed PubMed Central Google Scholar
Ohmae, S. & Medina, J. F. Climbing fibers encode a temporal-difference prediction error during cerebellar learning in mice. Nat. Neurosci. 18, 1798–1803 (2015).
Article CAS PubMed PubMed Central Google Scholar
ten Brinke, M. M. et al. Evolving models of Pavlovian conditioning: cerebellar cortical dynamics in awake behaving mice. Cell Rep. 13, 1977–1988 (2015).
Article PubMed PubMed Central Google Scholar
Boele, H.-J. et al. Impact of parallel fiber to Purkinje cell long-term depression is unmasked in absence of inhibitory input. Sci. Adv. 4, eaas9426 (2018).
Article CAS PubMed PubMed Central Google Scholar
Vilis, T. & Hore, J. in Progress in Brain Research Vol. 64 (eds. Freund, H.-J., Büttner, U., Cohen, B. & Noth, J.) 207–215 (Elsevier, 1986).
Flament, D., Hore, J. & Vilis, T. Braking of fast and accurate elbow flexions in the monkey. J. Physiol. 349, 195–202 (1984).
Article CAS PubMed PubMed Central Google Scholar
Vilis, T. & Hore, J. Effects of changes in mechanical state of limb on cerebellar intention tremor. J. Neurophysiol. 40, 1214–1224 (1977).
Article CAS PubMed Google Scholar
Pasalar, S., Roitman, A. V., Durfee, W. K. & Ebner, T. J. Force field effects on cerebellar Purkinje cell discharge with implications for internal models. Nat. Neurosci. 9, 1404–1411 (2006).
Article CAS PubMed Google Scholar
Robinson, D. A. The use of control systems analysis in the neurophysiology of eye movements. Annu. Rev. Neurosci. 4, 463–503 (1981).
Article CAS PubMed Google Scholar
Robinson, F. R. & Fuchs, A. F. The role of the cerebellum in voluntary eye movements. Annu. Rev. Neurosci. 24, 981–1004 (2001).
Article CAS PubMed Google Scholar
Smith, M. A., Brandt, J. & Shadmehr, R. Motor disorder in Huntington’s disease begins as a dysfunction in error feedback control. Nature 403, 544–549 (2000).
Article CAS PubMed PubMed Central Google Scholar
Kawato, M. & Gomi, H. A computational model of four regions of the cerebellum based on feedback-error learning. Biol. Cybern. 68, 95–103 (1992).
Article CAS PubMed Google Scholar
Flash, T. & Sejnowski, T. J. Computational approaches to motor control. Curr. Opin. Neurobiol. 11, 655–662 (2001).
Comments (0)