Advancing hepatotoxicity assessment: current advances and future directions

Nguyen P, Leray V, Diez M, Serisier S, Le Bloc’h J, Siliart B, Dumon H (2008) Liver lipid metabolism. J Anim Physiol Anim Nutr (Berl) 92:272–283. https://doi.org/10.1111/j.1439-0396.2007.00752.x

Article  CAS  PubMed  Google Scholar 

Almazroo OA, Miah MK, Venkataramanan R (2017) Drug metabolism in the liver. Clin Liver Dis 21:1–20. https://doi.org/10.1016/j.cld.2016.08.001

Article  PubMed  Google Scholar 

Petersen MC, Vatner DF, Shulman GI (2017) Regulation of hepatic glucose metabolism in health and disease. Nat Rev Endocrinol 13:572–587. https://doi.org/10.1038/nrendo.2017.80

Article  CAS  PubMed  PubMed Central  Google Scholar 

Trefts E, Gannon M, Wasserman DH (2017) The liver. Curr Biol 27:R1147–R1151. https://doi.org/10.1016/j.cub.2017.09.019

Article  CAS  PubMed  PubMed Central  Google Scholar 

Onakpoya IJ, Heneghan CJ, Aronson JK (2016) Post-marketing withdrawal of 462 medicinal products because of adverse drug reactions: a systematic review of the world literature. BMC Med 14:10. https://doi.org/10.1186/s12916-016-0553-2

Article  PubMed  PubMed Central  Google Scholar 

Watkins PB (2011) Drug safety sciences and the bottleneck in drug development. Clin Pharmacol Ther 89:788–790. https://doi.org/10.1038/clpt.2011.63

Article  CAS  PubMed  Google Scholar 

Wu Y, Xiao W, Tong W, Borlak J, Chen M (2022) A systematic comparison of hepatobiliary adverse drug reactions in FDA and EMA drug labeling reveals discrepancies. Drug Discov Today 27:337–346. https://doi.org/10.1016/j.drudis.2021.09.009

Article  CAS  PubMed  Google Scholar 

Russmann S, Kullak-Ublick GA, Grattagliano I (2009) Current concepts of mechanisms in drug-induced hepatotoxicity. Curr Med Chem 16:3041–3053. https://doi.org/10.2174/092986709788803097

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fernandez J, Bassegoda O, Toapanta D, Bernal W (2024) Acute liver failure: a practical update. JHEP Rep 6:101131. https://doi.org/10.1016/j.jhepr.2024.101131

Article  PubMed  PubMed Central  Google Scholar 

Lee WM (2008) Etiologies of acute liver failure. Semin Liver Dis 28:142–152. https://doi.org/10.1055/s-2008-1073114

Article  PubMed  Google Scholar 

Naritomi Y, Terashita S, Kagayama A, Sugiyama Y (2003) Utility of hepatocytes in predicting drug metabolism: comparison of hepatic intrinsic clearance in rats and humans in vivo and in vitro. Drug Metab Dispos 31:580–588. https://doi.org/10.1124/dmd.31.5.580

Article  CAS  PubMed  Google Scholar 

Kuzawa CW, Chugani HT, Grossman LI, Lipovich L, Muzik O, Hof PR, Wildman DE, Sherwood CC, Leonard WR, Lange N (2014) Metabolic costs and evolutionary implications of human brain development. Proc Natl Acad Sci USA 111:13010–13015. https://doi.org/10.1073/pnas.1323099111

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sanoh S, Horiguchi A, Sugihara K, Kotake Y, Tayama Y, Uramaru N, Ohshita H, Tateno C, Horie T, Kitamura S, Ohta S (2012) Predictability of metabolism of ibuprofen and naproxen using chimeric mice with human hepatocytes. Drug Metab Dispos 40:2267–2272. https://doi.org/10.1124/dmd.112.047555

Article  CAS  PubMed  Google Scholar 

Inoue T, Nitta K, Sugihara K, Horie T, Kitamura S, Ohta S (2008) CYP2C9-catalyzed metabolism of S-warfarin to 7-hydroxywarfarin in vivo and in vitro in chimeric mice with humanized liver. Drug Metab Dispos 36:2429–2433. https://doi.org/10.1124/dmd.108.022830

Article  CAS  PubMed  Google Scholar 

Nelson DR, Zeldin DC, Hoffman SM, Maltais LJ, Wain HM, Nebert DW (2004) Comparison of cytochrome P450 (CYP) genes from the mouse and human genomes, including nomenclature recommendations for genes, pseudogenes and alternative-splice variants. Pharmacogenetics 14:1–18. https://doi.org/10.1097/00008571-200401000-00001

Article  CAS  PubMed  Google Scholar 

Yang K, Woodhead JL, Watkins PB, Howell BA, Brouwer KL (2014) Systems pharmacology modeling predicts delayed presentation and species differences in bile acid-mediated troglitazone hepatotoxicity. Clin Pharmacol Ther 96:589–598. https://doi.org/10.1038/clpt.2014.158

Article  CAS  PubMed  Google Scholar 

Leslie EM, Watkins PB, Kim RB, Brouwer KL (2007) Differential inhibition of rat and human Na+-dependent taurocholate cotransporting polypeptide (NTCP/SLC10A1)by bosentan: a mechanism for species differences in hepatotoxicity. J Pharmacol Exp Ther 321:1170–1178. https://doi.org/10.1124/jpet.106.119073

Article  CAS  PubMed  Google Scholar 

Gerets HH, Tilmant K, Gerin B, Chanteux H, Depelchin BO, Dhalluin S, Atienzar FA (2012) Characterization of primary human hepatocytes, HepG2 cells, and HepaRG cells at the mRNA level and CYP activity in response to inducers and their predictivity for the detection of human hepatotoxins. Cell Biol Toxicol 28:69–87. https://doi.org/10.1007/s10565-011-9208-4

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jin M, Yi X, Liao W, Chen Q, Yang W, Li Y, Li S, Gao Y, Peng Q, Zhou S (2021) Advancements in stem cell-derived hepatocyte-like cell models for hepatotoxicity testing. Stem Cell Res Ther 12:84. https://doi.org/10.1186/s13287-021-02152-9

Article  PubMed  PubMed Central  Google Scholar 

Gomez-Lechon MJ, Donato MT, Castell JV, Jover R (2004) Human hepatocytes in primary culture: the choice to investigate drug metabolism in man. Curr Drug Metab 5:443–462. https://doi.org/10.2174/1389200043335414

Article  CAS  PubMed  Google Scholar 

Gomez-Lechon MJ, Tolosa L, Conde I, Donato MT (2014) Competency of different cell models to predict human hepatotoxic drugs. Expert Opin Drug Metab Toxicol 10:1553–1568. https://doi.org/10.1517/17425255.2014.967680

Article  CAS  PubMed  Google Scholar 

Knobeloch D, Ehnert S, Schyschka L, Buchler P, Schoenberg M, Kleeff J, Thasler WE, Nussler NC, Godoy P, Hengstler J, Nussler AK (2012) Human hepatocytes: isolation, culture, and quality procedures. Methods Mol Biol 806:99–120. https://doi.org/10.1007/978-1-61779-367-7_8

Article  CAS  PubMed  Google Scholar 

Zhao M, Ma J, Li M, Zhang Y, Jiang B, Zhao X, Huai C, Shen L, Zhang N, He L, Qin S (2021) Cytochrome P450 enzymes and drug metabolism in humans. Int J Mol Sci. https://doi.org/10.3390/ijms222312808

Article  PubMed  PubMed Central  Google Scholar 

Jaeschke H, Ramachandran A (2024) Acetaminophen hepatotoxicity: paradigm for understanding mechanisms of drug-induced liver injury. Annu Rev Pathol 19:453–478. https://doi.org/10.1146/annurev-pathmechdis-051122-094016

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bhogal RH, Hodson J, Bartlett DC, Weston CJ, Curbishley SM, Haughton E, Williams KT, Reynolds GM, Newsome PN, Adams DH, Afford SC (2011) Isolation of primary human hepatocytes from normal and diseased liver tissue: a one hundred liver experience. PLoS One 6:e18222. https://doi.org/10.1371/journal.pone.0018222

Article  CAS  PubMed  PubMed Central  Google Scholar 

Nakamura S, Salahuddin SZ, Biberfeld P, Ensoli B, Markham PD, Wong-Staal F, Gallo RC (1988) Kaposi’s sarcoma cells: long-term culture with growth factor from retrovirus-infected CD4+ T cells. Science 242:426–430. https://doi.org/10.1126/science.3262925

Article  CAS  PubMed  Google Scholar 

Koide N, Sakaguchi K, Koide Y, Asano K, Kawaguchi M, Matsushima H, Takenami T, Shinji T, Mori M, Tsuji T (1990) Formation of multicellular spheroids composed of adult rat hepatocytes in dishes with positively charged surfaces and under other nonadherent environments. Exp Cell Res 186:227–235. https://doi.org/10.1016/0014-4827(90)90300-y

Comments (0)

No login
gif