Akbari V, Borhani TNG, Shamiri A, Shafeeyan MS (2024) Computational fluid dynamics modeling of gas-solid fluidized bed reactor: influence of numerical and operating parameters. Exp Comput Multiph Flow 6:85–125. https://doi.org/10.1007/s42757-023-0158-x
Banerjee D, Elsaidi SK, Aguila B, Li B, Kim D, Schweiger MJ, Kruger AA, Doonan CJ, Ma S, Thallapally PK (2016a) Removal of pertechnetate-related oxyanions from solution using functionalized hierarchical porous frameworks. Chem Eur J 22(49):17581–17584
Banerjee D, Kim D, Schweiger MJ, Kruger AA, Thallapally PK (2016b) Removal of TcO4− ions from solution: materials and future outlook. Chem Soc Rev 45:2724–2739
Banerjee D, Xu W, Nie Z, Johnson LEV, Coghlan C, Sushko ML, Kim D, Schweiger MJ, Kruger AA, Doonan CJ, Thallapally PK (2016c) Zirconium-based metal–organic framework for removal of perrhenate from water. Inorg Chem 55(17):8241–8243. https://doi.org/10.1021/acs.inorgchem.6b01004
Bontchev RP, Liu S, Krumhansl JL, Voigt J, Nenoff TM (2003) Synthesis, characterization, and ion exchange properties of hydrotalcite Mg6Al2(OH)16(A)x(A′)2–x·4H2O (A, A′ = Cl-, Br-, I- and NO3-, 2 ≥ x ≥ 0) derivatives. Chem Mater 15(19):3669–3675
Castro SIC, Kirsch M, Kulenovic R, Starflinger J (2024) Experimental investigation of the heat transfer characteristics, operating limits, and temperature distribution of a prototypically 3 m long two-phase closed thermosyphon for spent fuel pool passive cooling. Exp Comput Multiph Flow 6:229–241. https://doi.org/10.1007/s42757-024-0193-2
Celik A, Li D, Quintero MA, Taylor-Pashow KML, Zhu X, Shakouri M, Roy SC, Kanatzidis MG, Arslan Z, Blanton A, Nie J, Ma S, Han FX, Islam SM (2022) Removal of CrO42−, a nonradioactive surrogate of 99TcO4−, using LDH–Mo3S13 nanosheets. Environ Sci Technol 56(12):8590–8598. https://doi.org/10.1021/acs.est.1c08766
Chen TBY, Liu L, Yuen ACY, Chen Q, Yeoh GH (2023a) A multiphase approach for pyrolysis modelling of polymeric materials. Exp Comput Multiph Flow 5:199–211
Chen DY, Liu ZL, Li SY, Jing XF, Tian YY, Hu W, Cui FC, Zhao R, Zhu GS (2023b) Rationally tailoring anion traps into electrospun nanofibers for highly efficient perrhenate/pertechnetate capture. Chem Eng J 452:139148. https://doi.org/10.1016/j.cej.2022.139148
Chen JJ, Cheng XK, Sheng GD (2023c) Graphene oxide enhanced the reductive sequestration of UO22+, ReO4−, SeO42− and SeO32− by zero-valent iron: batch, column and mechanism investigations. J Radioanal Nucl Chem 332:311–323. https://doi.org/10.1007/s10967-022-08725-z
Côté AP, Benin AI, Ockwig NW, O’Keeffe M, Matzger AJ, Yaghi OM (2005) Porous, crystalline, covalent organic frameworks. Science 310(5751):1166–1170
Cui WR, Xu W, Chen YR, Liu K, Qiu WB, Li YB, Qiu JD (2023) Olefin-linked cationic covalent organic frameworks for efficient extraction of ReO4−/99TcO4−. J Hazard Mater 446:130603. https://doi.org/10.1016/j.jhazmat.2022.130603
Daniels N, Franzen C, Murphy GL, Kvashnina K, Petrov V, Torapava N, Bukaemskiy A, Kowalski P, Si H, Ji Y, Hölzer A, Walther C (2019) Application of layered double hydroxides for 99Tc remediation. Appl Clay Sci 176:1–10. https://doi.org/10.1016/j.clay.2019.04.006
De Marchi L, Coppola F, Soares AMVM, Pretti C, Monserrat JM, della Torre C, Freitas R (2019) Engineered nanomaterials: From their properties and applications, to their toxicity towards marine bivalves in a changing environment. Environ Res 178:108683. https://doi.org/10.1016/j.envres.2019.108683
Di ZY, Mao YN, Yuan H, Zhou Y, Jin J, Li CP (2022) Covalent organic frameworks (COFs) for sequestration of 99TcO4−. Chem Res Chin Univ 38:290–295. https://doi.org/10.1007/s40242-022-1447-9
Di ZY, Liu ZF, Li HR, Liu Z, Li CP (2023) Enhancing the stability of poly(ionic liquids)@MOFs@COFs via core–shell protection strategy for 99TcO4− sequestration. Inorg Chem Front 10:952–958. https://doi.org/10.1039/D2QI02147A
Drout RJ, Otake K, Howarth AJ, Islamoglu T, Zhu L, Xiao C, Wang S, Farha OK (2018) Efficient capture of perrhenate and pertechnetate by a mesoporous Zr metal–organic framework and examination of anion binding motifs. Chem Mater 30:1277–1284
Dutta S, Samanta P, Joarder B, Let S, Mahato D, Babarao R, Ghosh SK (2020) A water-stable cationic metal–organic framework with hydrophobic pore surfaces as an efficient scavenger of oxo-anion pollutants from water. ACS Appl Mater Interfaces 12:41810–41818. https://doi.org/10.1021/acsami.0c13563
Fan D, Anitori RP, Tebo BM, Tratnyek PG, Lezama Pacheco JS, Kukkadapu RK, Engelhard MH, Bowden ME, Kovarik L, Arey BW (2013) Reductive sequestration of pertechnetate (99TcO4−) by nano zerovalent iron (nZVI) transformed by abiotic sulfide. Environ Sci Technol 47(10):5302–5310. https://doi.org/10.1021/es304829z
Fang QR, Wang JH, Gu S, Kaspar RB, Zhuang ZB, Zheng J, Guo HX, Qiu SL, Yan YS (2015) 3D porous crystalline polyimide covalent organic frameworks for drug delivery. J Am Chem Soc 137(26):8352–8355
Feng L, Zhu C, Yuan H, Liu L, Lv F, Wang S (2013) Conjugated polymer nanoparticles: preparation, properties, functionalization and biological applications. Chem Soc Rev 42(16):6620–6633. https://doi.org/10.1039/C3CS60036J
Geng KY, He T, Liu RY, Dalapati S, Tan KT, Li ZP, Tao SS, Gong YF, Jiang QH, Jiang DL (2020) Covalent organic frameworks: design, synthesis, and functions. Chem Rev 120(16):8814–8933
Gillman GP, Noble MA, Raven MD (2008) Anion substitution of nitrate-saturated layered double hydroxide of Mg and Al. Appl Clay Sci 38(3–4):179–186. https://doi.org/10.1016/j.clay.2007.03.004
Giustini G, Issa RI (2023) Modelling of free bubble growth with interface capturing computational fluid dynamics. Exp Comput Multiph Flow 5:357–364
Gkika DA, Mitropoulos AC, Kyzas GZ (2022) Why reuse spent adsorbents? The latest challenges and limitations. Sci Total Environ 822:153612. https://doi.org/10.1016/j.scitotenv.2022.153612
Gu P, Zhang S, Li X, Wang XX, Wen T, Jehan R, Alsaedi A, Hayat T, Wang XK (2018) Recent advances in layered double hydroxide-based nanomaterials for the removal of radionuclides from aqueous solution. Environ Pollut 240:493–505
Hao MJ, Chen ZS, Yang H, Waterhouse GIN, Ma SQ, Wang XK (2022) Pyridinium salt-based covalent organic framework with well-defined nanochannels for efficient and selective capture of aqueous 99TcO4−. Sci Bull 67(9):924–932
Hao MJ, Liu YF, Wu WJ, Wang SY, Yang XY, Chen ZS, Tang ZW, Huang QF, Wang SH, Yang H, Wang XK (2023) Advanced porous adsorbents for radionuclides elimination. EnergyChem 5(4):100101. https://doi.org/10.1016/j.enchem.2023.100101
He LW, Liu ST, Chen L, Dai X, Li J, Zhang MX, Ma FY, Zhang C, Yang ZX, Zhou RH, Chai ZF, Wang SA (2019) Mechanism unravelling for ultrafast and selective 99TcO4− uptake by a radiation-resistant cationic covalent organic framework: a combined radiological experiment and molecular dynamics simulation study. Chem Sci 10(15):4293–4305. https://doi.org/10.1039/C9SC00172G
He MM, Chen YX, Chen GY, Li WH, Zhang MX, Zhang C, Zhang H, Long XY, Tang K, Duan T, Zhu L (2024) Efficient removal of perrhenate/pertechnetate by a pyridinium-based porous polymer. Environ Pollut 357:124442. https://doi.org/10.1016/j.envpol.2024.124442
Hercigonja RV, Vranjes-Djuric SD, Mirkovic MD, Markovic BM, Maksin DD, Markovic BN, Nastasovic AB (2018) Technetium removal from the aqueous solution using zeolites A and Y containing transition metal ions Co2+ and Zn2+. J Radioanal Nucl Chem 317:215–225
Hoch LB, Mack EJ, Hydutsky BW, Hershman JM, Skluzacek JM, Mallouk TE (2008) Carbothermal synthesis of carbon-supported nanoscale zero-valent iron particles for the remediation of hexavalent chromium. Environ Sci Technol 42(7):2600–2605. https://doi.org/10.1021/es702589u
Hu QH, Jiang W, Liang RP, Lin S, Qiu JD (2021) Synthesis of imidazolium-based cationic organic polymer for highly efficient and selective removal of ReO4−/TcO4−. Chem Eng J 419:129546. https://doi.org/10.1016/j.cej.2021.129546
Comments (0)