Aksu Z (2005) Application of biosorption for the removal of organic pollutants: a review. Process Biochem 40:997–1026. https://doi.org/10.1016/j.procbio.2004.04.008
Ang T-F, Maiangwa J, Salleh AB, Normi YM, Leow TC (2018) Dehalogenases: from improved performance to potential microbial dehalogenation applications. Molecules 23:1100. https://doi.org/10.3390/molecules23051100
Beale DJ, Sinclair GM, Shah R, Paten AM, Kumar A, Long SM, Vardy S, Jones OAH (2022) A review of omics-based PFAS exposure studies reveals common biochemical response pathways. Sci Total Environ 845:157255. https://doi.org/10.1016/j.scitotenv.2022.157255
Berhanu A, Mutanda I, Taolin J, Qaria MA, Yang B, Zhu D (2023) A review of microbial degradation of per- and polyfluoroalkyl substances (PFAS): biotransformation routes and enzymes. Sci Total Environ 859:160010. https://doi.org/10.1016/j.scitotenv.2022.160010
Bhandari S, Poudel DK, Marahatha R, Dawadi S, Khadayat K, Phuyal S, Shrestha S, Gaire S, Basnet K, Khadka U, Parajuli N (2021) Microbial enzymes used in bioremediation. J Chem 2021:8849512. https://doi.org/10.1155/2021/8849512
Bhattacharya A, Fathima J, Varghese S, Chatterjee P, Gadhamshetty V (2025) Advances in bioremediation strategies for PFAS-contaminated water and soil. Soil & Environ Health 3:100126. https://doi.org/10.1016/j.seh.2024.100126
Biko ODV, Viljoen-Bloom M, van Zyl WH (2020) Microbial lignin peroxidases: Applications, production challenges and future perspectives. Enzyme Microb Technol 141:109669. https://doi.org/10.1016/j.enzmictec.2020.109669
Broman J, Ceja A, Godoy T, Rivera DR, Dionne P, Schipper J, Henkemeyer S, Cegielski S, Wong G, Kaur A (2021) Destruction of Per- and Polyfluoroalkyl Substances (PFAS) via Lacasse Enzymatic Degradation and Electrochemical Advanced Oxidation. In: 2021 Waste-management Education Research Conference (WERC). pp 1–10
Brusseau ML, Anderson RH, Guo B (2020) PFAS concentrations in soils: background levels versus contaminated sites. Sci Total Environ 740:140017. https://doi.org/10.1016/j.scitotenv.2020.140017
Butt CM, Muir DCG, Mabury SA (2014) Biotransformation pathways of fluorotelomer-based polyfluoroalkyl substances: a review. Environ Toxicol Chem 33:243–267. https://doi.org/10.1002/etc.2407
Calero P, Gurdo N, Nikel PI (2022) Role of the CrcB transporter of pseudomonas putida in the multi-level stress response elicited by mineral fluoride. Environ Microbiol 24:5082–5104. https://doi.org/10.1111/1462-2920.16110
Cerro-Gálvez E, Roscales JL, Jiménez B, Sala MM, Dachs J, Vila-Costa M (2020) Microbial responses to perfluoroalkyl substances and perfluorooctanesulfonate (PFOS) desulfurization in the Antarctic marine environment. Water Res 171:115434. https://doi.org/10.1016/j.watres.2019.115434
Che S, Jin B, Liu Z, Yu Y, Liu J, Men Y (2021) Structure-specific aerobic defluorination of short-chain fluorinated carboxylic acids by activated sludge communities. Environ Sci Technol Lett 8:668–674. https://doi.org/10.1021/acs.estlett.1c00511
Chen F, Zhou Y, Wang L, Wang P, Wang T, Ravindran B, Mishra S, Chen S, Cui X, Yang Y, Zhang W (2024) Elucidating the degradation mechanisms of perfluorooctanoic acid and perfluorooctane sulfonate in various environmental matrices: a review of green degradation pathways. Environ Geochem Health 46:349. https://doi.org/10.1007/s10653-024-02134-9
Chetverikov SP, Loginov ON (2019) A new ensifer adhaerens strain M1 is capable of transformation of perfluorocarboxylic acids. Microbiology 88:115–117. https://doi.org/10.1134/S0026261718060085
Chetverikov SP, Sharipov DA (2022) Biodegradation of Perfluorooctanoic Acid by Pseudomonas Plecoglossicida Strain DD4. Baghdad Sci J 19(6(Suppl.)):1502. https://doi.org/10.21123/bsj.2022.6825
Chetverikov SP, Sharipov DA, Korshunova TYu, Loginov ON (2017) Degradation of perfluorooctanyl sulfonate by strain Pseudomonas plecoglossicida 2.4-D. Appl Biochem Microbiol 53:533–538. https://doi.org/10.1134/S0003683817050027
Chetverikov S, Hkudaygulov G, Sharipov D, Starikov S, Chetverikova D (2023) Biodegradation potential of C7–C10 perfluorocarboxylic acids and data from the genome of a new strain of pseudomonas mosselii 5(3). Toxics 11:1001. https://doi.org/10.3390/toxics11121001
Chiriac FL, Stoica C, Iftode C, Pirvu F, Petre VA, Paun I, Pascu LF, Vasile GG, Nita-Lazar M (2023) Bacterial biodegradation of perfluorooctanoic acid (PFOA) and perfluorosulfonic acid (PFOS) using pure pseudomonas strains. Sustainability 15:14000. https://doi.org/10.3390/su151814000
D’Ambro EL, Murphy BN, Bash JO, Gilliam RC, Pye HOT (2023) Predictions of PFAS regional-scale atmospheric deposition and ambient air exposurePFAS. Sci Total Environ 902:166256. https://doi.org/10.1016/j.scitotenv.2023.166256
Das S, Ronen A (2022) A review on removal and destruction of per- and polyfluoroalkyl substances (PFAS) by novel membranes. Membranes 12:662. https://doi.org/10.3390/membranes12070662
Dhruv Patel D, Bhatt S (2022) Environmental pollution, toxicity profile, and physico-chemical and biotechnological approaches for treatment of textile wastewater. Biotechnol Genet Eng Rev 38:33–86. https://doi.org/10.1080/02648725.2022.2048434
Ding R, Wu Y, Yang F, Xiao X, Li Y, Tian X, Zhao F (2021) Degradation of low-concentration perfluorooctanoic acid via a microbial-based synergistic method: assessment of the feasibility and functional microorganisms. J Hazard Mater 416:125857. https://doi.org/10.1016/j.jhazmat.2021.125857
EPA U (2009) Long Chain Perfluorinated Chemicals (PFCs) Action Plan Summary
Falade AO, Nwodo UU, Iweriebor BC, Green E, Mabinya LV, Okoh AI (2017) Lignin peroxidase functionalities and prospective applications. MicrobiologyOpen 6:e00394. https://doi.org/10.1002/mbo3.394
Fall I, Czerwiec Q, Abdellaoui S, Doumèche B, Ochs M, Rémond C, Rakotoarivonina H (2023) A thermostable bacterial catalase-peroxidase oxidizes phenolic compounds derived from lignins. Appl Microbiol Biotechnol 107:201–217. https://doi.org/10.1007/s00253-022-12263-9
Fuertes I, Gómez-Lavín S, Elizalde MP, Urtiaga A (2017) Perfluorinated alkyl substances (PFASs) in northern Spain municipal solid waste landfill leachates. Chemosphere 168:399–407. https://doi.org/10.1016/j.chemosphere.2016.10.072
Glüge J, Scheringer M, Cousins IT, DeWitt JC, Goldenman G, Herzke D, Lohmann R, Ng CA, Trier X, Wang Z (2020) An overview of the uses of per- and polyfluoroalkyl substances (PFAS). Environ Sci: Proc Impacts 22:2345–2373. https://doi.org/10.1039/D0EM00291G
Goldman P (1965) The enzymatic cleavage of the carbon-fluorine bond in fluoroacetate. J Biol Chem 240:3434–3438. https://doi.org/10.1016/S0021-9258(18)97236-4
Grgas D, Petrina A, Štefanac T, Bešlo D, Landeka Dragičević T (2023) A review: per- and polyfluoroalkyl substances—biological degradation. Toxics 11:446. https://doi.org/10.3390/toxics11050446
Harris JD, Coon CM, Doherty ME, McHugh EA, Warner MC, Walters CL, Orahood OM, Loesch AE, Hatfield DC, Sitko JC, Almand EA, Steel JJ (2022) Engineering and characterization of dehalogenase enzymes from Delftia acidovorans in bioremediation of perfluorinated compoundsDelftia acidovorans. Synth Syst Biotech 7:671–676. https://doi.org/10.1016/j.synbio.2022.02.005
Hartz WF, Björnsdotter MK, Yeung LWY, Hodson A, Thomas ER, Humby JD, Day C, Jogsten IE, Kärrman A, Kallenborn R (2023) Levels and distribution profiles of per- and polyfluoroalkyl substances (pfas) in a high arctic svalbard ice core. Sci Total Environ 871:161830. https://doi.org/10.1016/j.scitotenv.2023.161830
Higuchi T (2004) Microbial degradation of lignin: Role of lignin peroxidase, manganese peroxidase, and laccase. Proc Jpn Acad Ser B Phys Biol Sci 80:204–214
Huang S, Jaffé PR (2019) Defluorination of Perfluorooctanoic Acid (PFOA) and Perfluorooctane Sulfonate (PFOS) by Acidimicrobium sp Strain A6. Environ Sci & Technol 53:11410. https://doi.org/10.1021/acs.est.9b04047
Huang Z, Xu P, Chen G, Zeng G, Chen A, Song Z, He K, Yuan L, Li H, Hu L (2018) Silver ion-enhanced particle-specific cytotoxicity of silver nanoparticles and effect on the production of extracellular secretions of Phanerochaete chrysosporium. Chemosphere 196:575–584.
Comments (0)