Development of Multiplex Real-Time RT–PCR to Determine the Expression Levels of Toll-Like Receptor Genes

Jin M.S., Kim S.E., Heo J.Y., Lee M.E., Kim H.M., Paik S.-G., Lee J.-O. 2007. Crystal structure of the TLR1-TLR2 heterodimer induced by binding of a triacylated lipopeptide. Cell. 130 (6), 1071–1082.

Article  CAS  PubMed  Google Scholar 

Takeuchi O., Hoshino K., Kawai T., Sanjo H., Takada H., Ogawa T., Akira S. 1999. Differential roles of TLR2 and TLR4 in recognition of gram-negative and gram-positive bacterial cell wall components. Immunity. 11 (4), 443–451.

Article  CAS  PubMed  Google Scholar 

Salamaikina S.A., Mironov K.O. 2023. Single nucleotide polymorphisms in Toll-like receptor genes associated with the risk of tuberculosis and other diseases of the lower respiratory tract. Epidemiol. Infect. Dis. Curr. Iss. 4, 57‒61.

Google Scholar 

Zielniok K., Burdzinska A., Murcia Pienkowski V., Koppolu A., Rydzanicz M., Zagozdzon R., Paczek L. 2021. Gene expression profile of human mesenchymal stromal cells exposed to hypoxic and pseudohypoxic preconditioning-an analysis by RNA sequencing. Int. J. Mol. Sci. 22 (15), 8160.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bednarczyk M., Muc-Wierzgoń M., Walkiewicz K., Kokot T., Fatyga E., Mazurek U. 2017. Profile of gene expression of TLR-signaling pathways in colorectal cancer tissues. Int. J. Immunopathol. Pharmacol. 30 (3), 322–326.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bliss T.W., Dohms J.E., Emara M.G., Keeler C.L. 2005. Gene expression profiling of avian macrophage activation. Vet. Immunol. Immunopathol. 105 (3–4), 289–299.

Article  CAS  PubMed  Google Scholar 

Otto E., Köhli P., Appelt J., Menzel S., Fuchs M., Bahn A., Jahn D. 2020. Validation of reference genes for expression analysis in a murine trauma model combining traumatic brain injury and femoral fracture. Sci. Rep. 10 (1), 15057.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Herath S., Dai H., Erlich J., Au A.Y., Taylor K., Succar L., Endre Z.H. 2020. Selection and validation of reference genes for normalisation of gene expression in ischaemic and toxicological studies in kidney disease. PLoS One. 15 (5), e0233109.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ostheim P., Alemu S.W., Tichý A., Sirak I., Davidkova M., Stastna M.M., Abend M. 2022. Examining potential confounding factors in gene expression analysis of human saliva and identifying potential housekeeping genes. Sci. Rep. 12 (1), 2312.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Axelrod E.V., Mironov K.O., Dunaeva E.A., Shipulin G.A. 2016. The comparison of three molecular genetic techniques for identifying major mutations in gene HFE related to development of inherent hemochromatosis. Clin. Lab. Diagn. 61 (5), 316–320.

CAS  Google Scholar 

Ye J., Coulouris G., Zaretskaya I., Cutcutache I., Rozen S., Madden T.L. 2012. Primer-BLAST: A tool to design target-specific primers for polymerase chain reaction. BMC Bioinf. 13 (1), 134.

Article  CAS  Google Scholar 

Wickham H. 2009. Ggplot2: Elegant Graphics for Data Analysis. New York: Springer.

Book  Google Scholar 

Vandesompele J., De Preter K., Pattyn F., Poppe B., Van Roy N., De Paepe A., Speleman F. 2002. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol. 3 (7), research0034.1.

Pfaffl M.W., Tichopad A., Prgomet C., Neuvians T.P. 2004. Determination of stable housekeeping genes, differentially regulated target genes and sample integrity: BestKeeper—excel-based tool using pair-wise correlations. Biotechnol. Lett. 26 (6), 509–515.

Article  CAS  PubMed  Google Scholar 

Huggett J., Dheda K., Bustin S., Zumla A. 2005. Real-time RT-PCR normalisation; strategies and considerations. Genes Immun. 6 (4), 279–284.

Article  CAS  PubMed  Google Scholar 

Bustin S.A., Benes V., Garson J.A., Hellemans J., Huggett J., Kubista M., Wittwer C.T. 2009. The MIQE Guidelines: Minimum information for publication of quantitative real-time PCR experiments. Clin. Chem. 55 (4), 611–622.

Article  CAS  PubMed  Google Scholar 

Thomas K.C., Zheng X.F., Garces Suarez F., Raf-tery J.M., Quinlan K.G.R., Yang N., Houweling P.J. 2014. Evidence based selection of commonly used RT--qPCR reference genes for the analysis of mouse skeletal muscle. PLoS One. 9 (2), e88653.

Article  PubMed  PubMed Central  Google Scholar 

Dheda K., Huggett J.F., Bustin S.A., Johnson M.A., Rook G., Zumla A. 2004. Validation of housekeeping genes for normalizing RNA expression in real-time PCR. BioTechniques. 37 (1), 112–119.

Article  CAS  PubMed  Google Scholar 

Lyng M.B., Laenkholm A.-V., Pallisgaard N., Ditzel H.J. 2008. Identification of genes for normalization of real-time RT-PCR data in breast carcinomas. BMC Cancer. 8, 20.

Article  PubMed  PubMed Central  Google Scholar 

Suzuki T., Higgins P.J., Crawford D.R. 2000. Control selection for RNA quantitation. BioTechniques. 29 (2), 332–337.

Article  CAS  PubMed  Google Scholar 

Fu Y., Yang J., Fan S., Zhao S., Du R., Shah S.M.A., Yang Y. 2020. Selection and validation of optimal endogenous reference genes for analysis of quantitative PCR in four tissues pathologically associated with Kidney-yang deficiency syndrome following influenza A infection. Exp. Ther. Med. 20 (6), 244.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ohl F., Jung M., Radonić A., Sachs M., Loening S.A., Jung K. 2006. Identification and validation of suitable endogenous reference genes for gene expression studies of human bladder cancer. J. Urol. 175 (5), 1915–1920.

Article  CAS  PubMed  Google Scholar 

Song R., He S., Wu Y., Chen W., Song J., Zhu Y., Tan S. 2023. Validation of reference genes for the normalization of the RT-qPCR in peripheral blood mononuclear cells of septic patients. Heliyon. 9 (4), e15269.

Article  CAS  PubMed  PubMed Central  Google Scholar 

An H., Yu Y., Zhang M., Xu H., Qi R., Yan X., Liu S., Wang W., Guo Z., Guo J., Qin Z., Cao X. 2002. Involvement of ERK, p38 and NF-κB signal transduction in regulation of TLR2, TLR4 and TLR9 gene expression induced by lipopolysaccharide in mouse dendritic cells. Immunology. 106, 38‒45.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sidletskaya K., Vitkina T., Denisenko Y. 2020. The role of Toll-like receptors 2 and 4 in the pathogenesis of chronic obstructive pulmonary disease. Int. J. Chronic Obstruct. Pulm. Dis. 15, 1481–1493.

Article  CAS  Google Scholar 

Tian Y., Huang B., Li J., Tian X., Zeng X. 2022. Identification of the association between Toll-like receptors and T-cell activation in Takayasu’s arteritis. Front. Immunol. 12, 792901.

Article  PubMed  PubMed Central  Google Scholar 

Lu C.-C., Kuo H.-C., Wang F.-S., Jou M.-H., Lee K.-C., Chuang J.-H. 2015. Upregulation of TLRs and IL-6 as a marker in human colorectal cancer. Int. J. Mol. Sci. 16 (1), 159–177.

Article  Google Scholar 

Ying J., Hong H., Yu C., Jiang M., Ding D. 2023. Identification of TLRs as potential prognostic biomarkers for lung adenocarcinoma. Medicine (Baltimore). 102 (38), e34954.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Shi S., Xu C., Fang X., Zhang Y., Li H., Wen W., Yang G. 2020. Expression profile of Toll‑like receptors in human breast cancer. Mol. Med. Rep. 21, 786–794.

PubMed  Google Scholar 

Zou X., Guo B., Ling Q., Mo Z. 2022. Toll-Like receptors serve as biomarkers for early diagnosis and prognosis assessment of kidney renal clear cell carcinoma by influencing the immune microenvironment: Comprehensive bioinformatics analysis combined with experimental validation. Front. Mol. Biosci. 9, 832238.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Comments (0)

No login
gif