Omics Study of Ovarian Malignancies: From Urine Metabolomic Profile to Minimally Invasive MicroRNA Markers

Reid B.M., Permuth J.B., Sellers T.A. 2017. Epidemiology of ovarian cancer: a review. Cancer Biol. Med. 14 (1), 9–32.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kaprin A.D., Starinsky V.V., Petrova G.V. 2019. Malignant Neoplasms in Russia in 2018 (Morbidity and Mortality). Moscow: MNIOI im. P.A. Herzen—a branch of the Federal State Budgetary Institution “NMITs Radiology” of the Ministry of Health of Russia.

Tsandekova M.R., Porkhanova N.V., Kutilin D.S. 2020. Molecular characterization of serous ovarian adenocarcinoma: implications for diagnosis and treatment. Modern Probl. Sci. Educ. No. 1. https://science-education.ru/ru/article/view?id=29428.

Meinhold-Heerlein I., Fotopoulou C., Harter P., Kurzeder C., Mustea A., Wimberger P., Hauptmann S., Sehouli J. 2016. The new WHO classification of ovarian, fallopian tube, and primary peritoneal cancer and its clinical implications. Arch. Gynecol. Obstet. 293 (4), 695–700.

Article  PubMed  Google Scholar 

Rooth C. 2013. Ovarian cancer: risk factors, treatment and management. Br. J. Nurs. 22 (17), S23–30.

Article  PubMed  Google Scholar 

Swiatly A., Plewa S, Matysiak J., Kokot Z.J. 2018. Mass spectrometry-based proteomics techniques and their application in ovarian cancer research. J. Ovarian Res. 11 (1), 88. https://doi.org/10.1186/s13048-018-0460-6

Article  CAS  PubMed  PubMed Central  Google Scholar 

Veenstra T.D. 2012. Metabolomics: The final frontier? Genome Med. 4 (4), 40.

Article  PubMed  PubMed Central  Google Scholar 

Schmidt D.R., Patel R., Kirsch D.G., Lewis C.A., Vander Heiden M.G., Locasale J.W. 2021. Metabolomics in cancer research and emerging applications in clinical oncology. CA—Cancer J. Clin. 71 (4), 333–358.

Article  PubMed  PubMed Central  Google Scholar 

Balcells I., Cirera S., Busk P.K. 2011. Specific and sensitive quantitative RT-PCR of miRNAs with DNA primers. BMC Biotechnol. 11 (1), 70.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Vandesompele J., De Preter K., Pattyn F., Poppe B., Van Roy N., De Paepe A., Speleman F. 2002. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol. 3 (7), research0034.

Peltier H.J., Latham G.J. 2008. Normalization of microRNA expression levels in quantitative RT-PCR assays: Identification of suitable reference RNA targets in normal and cancerous human solid tissues. RNA. 14, 844–852.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Shen Y., Li Y., Ye F., Wang F., Wan X., Lu W., Xie X. 2011. Identification of miR-23a as a novel microRNA normalizer for relative quantification in human uterine cervical tissues. Exp. Mol. Med. 43, 358–366.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kutilin D.S., Dimitriadi S.N., Vodolazhsky D.I., Frantsiyants E.M., Kit O.I. 2017. Effect of thermal ischemia-reperfusion on expression of apoptosis-regulating genes in the renal tissue of patients with renal cell carcinoma. Nephrology (St. Petersburg). 21 (1), 80‒86. https://doi.org/10.24884/1561-6274-2017-21-1-80-86

Article  Google Scholar 

Jones E., Oliphant E., Peterson P. 2001. SciPy: Open source scientific tools for python. http://www.scipy.org/.

Ding J., Li X., Hu H. 2016. TarPmiR: A new approach for microRNA target site prediction. Bioinformatics. 32 (18), 2768–2775.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tsandekova M.R., Porkhanova N.V., Kit O.I., Kutilin D.S. 2021. Minimally invasive molecular diagnosis of high and low grade serous ovarian adenocarcinoma. Oncogynecology. 4, 35–50.

Google Scholar 

Causin R., Pessôa-Pereira D., Souza K., Evangelista A., Reis R., Fregnani J., Marques M. 2019. Identification and performance evaluation of housekeeping genes for microRNA expression normalization by reverse transcription-quantitative PCR using liquid-based cervical cytology samples. Oncol. Lett. 18, 4753–4761.

CAS  PubMed  PubMed Central  Google Scholar 

Hanke M., Hoefig K., Merz H., Feller A., Kausch I., Jocham D., Warnecke J., Sczakiel G. 2010. A robust methodology to study urine microRNA as tumor marker: microRNA-126 and microRNA-182 are related to urinary bladder cancer. Urol. Oncol. 28 (6), 655–661.

Article  CAS  PubMed  Google Scholar 

Weber J., Baxter D., Zhang S., Huang D., Huang K., Lee M., Galas D., Wang K. 2010. The microRNA spectrum in 12 body fluids. Clin. Chem. 56 (11), 1733–1741.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zafari S., Backes C., Leidinger P., Meese E., Keller A. 2015. Regulatory microRNA networks: Complex patterns of target pathways for disease-related and housekeeping microRNAs. Genomics Proteomics Bioinformatics. 13, 159–168.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Koundouros N., Poulogiannis G. 2020. Reprogramming of fatty acid metabolism in cancer. Br. J. Cancer. 122 (1), 4–22.

Article  CAS  PubMed  Google Scholar 

Zhao S., Cheng L., Shi Y., Li J., Yun Q., Yang H. 2021. MIEF2 reprograms lipid metabolism to drive progression of ovarian cancer through ROS/AKT/mTOR signaling pathway. Cell Death Dis. 12 (1), 18.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zazula R., Moravec M., Pehal F., Nejtek T., Protuš M., Müller M. 2021. Myristic acid serum levels and their significance for diagnosis of systemic inflammatory response, sepsis, and bacteraemia. J. Person. Med. 11 (4), 306.

Article  Google Scholar 

Nelson D.L, Cox M.M. 2005. Lehninger Principles of Biochemistry. 4th ed. New York: W.H. Freeman.

Google Scholar 

Matta M., Deubler E., Chajes V., Vozar B., Gunter M.J., Murphy N., Gaudet M.M. 2022. Circulating plasma phospholipid fatty acid levels and breast cancer risk in the Cancer Prevention Study-II Nutrition Cohort. Int. J. Cancer. 151 (12), 2082–2094.

Article  CAS  PubMed  Google Scholar 

Aglago E.K., Murphy N., Huybrechts I., Nicolas G., Casagrande C., Fedirko V., Weiderpass E., Rothwell J.A., Dahm C.C., Olsen A., Tjønneland A., Kaaks R., Katzke V., Schulze M.B., Masala G., Agnoli C., Panico S., Tumino R., Sacerdote C., Bueno-de-Mesquita B.H., Derksen J.W.G., Skeie G., Gram I.T., Brustad M., Jakszyn P., Sánchez M.J., Amiano P., Huerta J.M., Ericson U., Wennberg M., Perez-Cornago A., Heath A.K., Jenab M., Chajes V., Gunter M.J. 2021. Dietary intake and plasma phospholipid concentrations of saturated, monounsaturated and trans fatty acids and colorectal cancer risk in the European Prospective Investigation into Cancer and Nutrition Cohort. Int. J. Cancer. 149 (4), 865–882.

Article  CAS  Google Scholar 

Weir T.L., Manter D.K., Sheflin A.M., Barnett B.A., Heuberger A.L., Ryan E.P. 2013. Stool microbiome and metabolome differences between colorectal cancer patients and healthy adults. PLoS One. 8 (8), e70803.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cheng Y., Xie G., Chen T., Qiu Y., Zou X., Zheng M., Tan B., Feng B., Dong T., He P., Zhao L., Zhao A., Xu L.X., Zhang Y., Jia W. 2012. Distinct urinary metabolic profile of human colorectal cancer. J. Proteome Res. 11 (2), 1354–1363.

Article  CAS  PubMed  Google Scholar 

Ni Y., Xie G., Jia W. 2014. Metabonomics of human colorectal cancer: new approaches for early diagnosis and biomarker discovery. J. Proteome Res. 13 (9), 3857–3870.

Article  CAS  PubMed  Google Scholar 

Brown D.G., Rao S., Weir T.L., O’Malia J., Bazan M., Brown R.J., Ryan E.P. 2016. Metabolomics and metabolic pathway networks from human colorectal cancers, adjacent mucosa, and stool. Cancer Metab. 4, 11.

Article  PubMed  PubMed Central  Google Scholar 

Sinha R., Ahn J., Sampson J.N., Shi J., Yu G., Xiong X., Hayes R.B., Goedert J.J. 2016. Fecal microbiota, fecal metabolome, and colorectal cancer interrelations. PLoS One. 11 (3), e0152126.

Article  PubMed  PubMed Central  Google Scholar 

Goedert J.J., Sampson J.N., Moore S.C., Xiao Q., Xiong X., Hayes R.B., Ahn J., Shi J., Sinha R. 2014. Fecal metabolomics: assay performance and association with colorectal cancer. Carcinogenesis. 35 (9), 2089–2096.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wang X., Wang J., Rao B., Deng L. 2017. Gut flora profiling and fecal metabolite composition of colorectal cancer patients and healthy individuals. Exp. Ther. Med. 13 (6), 2848–2854.

Article  CAS  PubMed  PubMed Central 

Comments (0)

No login
gif