Automated machine learning model for predicting anastomotic strictures after esophageal cancer surgery: a retrospective cohort study

Deboever N, Jones CM, Yamashita K, Ajani JA, Hofstetter WL (2024) Advances in diagnosis and management of cancer of the esophagus. BMJ 385:e074962. https://doi.org/10.1136/bmj-2023-074962

Article  CAS  PubMed  Google Scholar 

Sun S et al (2023) Different gastric tubes in esophageal reconstruction during esophagectomy. Esophagus 20(4):595–604. https://doi.org/10.1007/s10388-023-01021-z

Article  PubMed  PubMed Central  Google Scholar 

Chevallay M, Jung M, Chon S-H, Takeda FR, Akiyama J, Mönig S (2020) Esophageal cancer surgery: review of complications and their management. Ann N Y Acad Sci 1482(1):146–162. https://doi.org/10.1111/nyas.14492

Article  PubMed  Google Scholar 

Kalata S et al (2023) Epidemiology of postoperative complications after esophagectomy: implications for management. Ann Thorac Surg 116(6):1168–1175. https://doi.org/10.1016/j.athoracsur.2023.09.004

Article  PubMed  Google Scholar 

Patel P, Patel M, Ebrahim MA, Loganathan P, Adler DG (2024) Endoscopic management of lower gastrointestinal tract anastomosis strictures: a meta-analysis and systematic review of the literature. Dig Dis Sci 69(10):3882–3893. https://doi.org/10.1007/s10620-024-08627-y

Article  PubMed  Google Scholar 

Zhong Y et al (2024) Risk factors for esophageal anastomotic stricture after esophagectomy: a meta-analysis. BMC Cancer 24(1):872. https://doi.org/10.1186/s12885-024-12625-8

Article  PubMed  PubMed Central  Google Scholar 

Mendelson AH, Small AJ, Agarwalla A, Scott FI, Kochman ML (2015) Esophageal anastomotic strictures: outcomes of endoscopic dilation, risk of recurrence and refractory stenosis, and effect of foreign body removal. Clin Gastroenterol Hepatol 13(2):263–271.e1. https://doi.org/10.1016/j.cgh.2014.07.010

Article  PubMed  Google Scholar 

Wang X, Liu X, Gu Z, Li X, Shu Y (2023) Experiences and requirements in nutritional management of patients with esophageal cancer: a systematic review and qualitative meta-synthesis. Support Care Cancer 31(12):633. https://doi.org/10.1007/s00520-023-08100-y

Article  PubMed  Google Scholar 

Na B, Kang CH, Na KJ, Park S, Park IK, Kim YT (2023) Risk factors of anastomosis stricture after esophagectomy and the impact of anastomosis technique. Ann Thorac Surg 115(5):1257–1264. https://doi.org/10.1016/j.athoracsur.2023.01.026

Article  PubMed  Google Scholar 

Hagi T et al (2019) Dysphagia score as a predictor of adverse events due to triplet chemotherapy and oncological outcomes in 434 consecutive patients with esophageal cancer. Ann Surg Oncol 26(13):4754–4764. https://doi.org/10.1245/s10434-019-07744-7

Article  PubMed  Google Scholar 

Mellow MH, Pinkas H (1985) Endoscopic laser therapy for malignancies affecting the esophagus and gastroesophageal junction. Analysis of technical and functional efficacy. Arch Intern Med 145(8):1443–1446

Article  CAS  PubMed  Google Scholar 

Alhudhaif A (2021) A novel multi-class imbalanced EEG signals classification based on the adaptive synthetic sampling (ADASYN) approach. PeerJ Comput Sci 7:e523. https://doi.org/10.7717/peerj-cs.523

Article  PubMed  PubMed Central  Google Scholar 

Lundberg SM, Lee S-I (2017) A unified approach to interpreting model predictions. In: Guyon I, Luxburg UV, Bengio S, Wallach H, Fergus R, Vishwanathan S, Garnett R (eds) Advances in neural information processing systems. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf

Low DE et al (2019) Benchmarking complications associated with esophagectomy. Ann Surg 269(2):291–298. https://doi.org/10.1097/SLA.0000000000002611

Article  PubMed  Google Scholar 

Herron R, Abbas G (2021) Techniques of esophageal anastomoses for esophagectomy. Surg Clin North Am 101(3):511–524. https://doi.org/10.1016/j.suc.2021.03.012

Article  PubMed  Google Scholar 

Carr RA, Molena D (2021) Minimally invasive esophagectomy: anastomotic techniques. Ann Esophagus 4:19. https://doi.org/10.21037/aoe-20-40

Ge F et al (2022) Evaluation of clinical and safety outcomes of neoadjuvant immunotherapy combined with chemotherapy for patients with resectable esophageal cancer: a systematic review and meta-analysis. JAMA Netw Open 5(11):e2239778. https://doi.org/10.1001/jamanetworkopen.2022.39778

Article  PubMed  PubMed Central  Google Scholar 

Hong Z et al (2023) Additional neoadjuvant immunotherapy does not increase the risk of anastomotic leakage after esophagectomy for esophageal squamous cell carcinoma: a multicenter retrospective cohort study. Int J Surg Lond Engl 109(8):2168–2178. https://doi.org/10.1097/JS9.0000000000000487

Article  Google Scholar 

Sugimoto A et al (2021) Preoperative C-reactive protein to albumin ratio predicts anastomotic leakage after esophagectomy for thoracic esophageal cancer: a single-center retrospective cohort study. BMC Surg 21(1):348. https://doi.org/10.1186/s12893-021-01344-7

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhang C et al (2021) Predictive value of postoperative C-reactive protein-to-albumin ratio in anastomotic leakage after esophagectomy. J Cardiothorac Surg 16(1):133. https://doi.org/10.1186/s13019-021-01515-w

Article  PubMed  PubMed Central  Google Scholar 

Jiang H et al (2021) Risk factors for anastomotic complications after radical mckeown esophagectomy. Ann Thorac Surg 112(3):944–951. https://doi.org/10.1016/j.athoracsur.2020.09.019

Article  PubMed  Google Scholar 

Wang X et al (2019) Predictive value of anastomotic blood supply for anastomotic stricture after esophagectomy in esophageal cancer. Dig Dis Sci 64(11):3307–3313. https://doi.org/10.1007/s10620-018-5451-3

Article  CAS  PubMed  Google Scholar 

Kong C, Zhu Y, Xie X, Wu J, Qian M (2023) Six potential biomarkers in septic shock: a deep bioinformatics and prospective observational study. Front Immunol 14:1184700. https://doi.org/10.3389/fimmu.2023.1184700

Article  CAS  PubMed  PubMed Central  Google Scholar 

Leevy JL, Khoshgoftaar TM, Bauder RA, Seliya N (2018) A survey on addressing high-class imbalance in big data. J Big Data 5(1):42. https://doi.org/10.1186/s40537-018-0151-6

Article  Google Scholar 

TalebiMoghaddam M et al (2024) Predicting diabetes in adults: identifying important features in unbalanced data over a 5-year cohort study using machine learning algorithm. BMC Med Res Methodol 24(1):220. https://doi.org/10.1186/s12874-024-02341-z

Article  CAS  Google Scholar 

Friedman JH (2001) Greedy function approximation: a gradient boosting machine. Ann Stat 29(5):1189–1232. https://doi.org/10.1214/aos/1013203451

Article  Google Scholar 

Rodríguez-Tomàs E et al (2022) Gradient boosting machine identified predictive variables for breast cancer patients pre- and post-radiotherapy: preliminary results of an 8-year follow-up study. Antioxid Basel Switz. https://doi.org/10.3390/antiox11122394

Article  Google Scholar 

Boldini D, Grisoni F, Kuhn D, Friedrich L, Sieber SA (2023) Practical guidelines for the use of gradient boosting for molecular property prediction. J Cheminform 15(1):73. https://doi.org/10.1186/s13321-023-00743-7

Article  PubMed  PubMed Central  Google Scholar 

Jiang X, Wang J, Meng Q, Saada M, Cai H (2023) An adaptive multi-class imbalanced classification framework based on ensemble methods and deep network. Neural Comput Appl 35(15):11141–11159. https://doi.org/10.1007/s00521-023-08290-w

Article  Google Scholar 

Wang K et al (2021) Interpretable prediction of 3-year all-cause mortality in patients with heart failure caused by coronary heart disease based on machine learning and SHAP. Comput Biol Med 137:104813. https://doi.org/10.1016/j.compbiomed.2021.104813

Article  PubMed  Google Scholar 

Jia L et al (2022) Development of interactive biological web applications with R/Shiny. Brief Bioinform 23(1):bbab415. https://doi.org/10.1093/bib/bbab415

Article  CAS  PubMed  Google Scholar 

Comments (0)

No login
gif