Timmis A, Vardas P, Townsend N, Torbica A, Katus H, De Smedt D, et al. European society of cardiology: cardiovascular disease statistics 2021. Eur Heart J. 2022;43:716–99.
Gomez-Delgado F, Raya-Cruz M, Katsiki N, Delgado-Lista J, Perez-Martinez P. Residual cardiovascular risk: when should we treat it? Eur J Intern Med. 2024;120:17–24.
Makover ME, Surma S, Banach M, Toth PP. Eliminating atherosclerotic cardiovascular disease residual risk. Eur Heart J. 2023;44(45):4731–3.
Article CAS PubMed Google Scholar
Matsuura Y, Kanter JE, Bornfeldt KE. Highlighting residual atherosclerotic cardiovascular disease risk. Arterioscler Thromb Vasc Biol. 2019;39(1):e1–9.
Article CAS PubMed PubMed Central Google Scholar
Visseren FLJ, Mach F, Smulders YM, Carballo D, Koskinas KC, Bäck M, ESC National Cardiac Societies; ESC Scientific Document Group, et al. 2021 ESC guidelines on cardiovascular disease prevention in clinical practice. Eur Heart J. 2021;42(34):3227–337.
Volpe M, Presta V. Inflammatory residual risk: an emerging target to reduce cardiovascular disease? Clin Cardiol. 2018;41(4):437–9.
Article PubMed PubMed Central Google Scholar
Kronenberg F, Mora S, Stroes ESG, Ference BA, Arsenault BJ, Berglund L, et al. Lipoprotein(a) in atherosclerotic cardiovascular disease and aortic stenosis: a European atherosclerosis society consensus statement. Eur Heart J. 2022;43:3925–46.
Article CAS PubMed Google Scholar
Sniderman AD, Navar AM, Thanassoulis G, Apolipoprotein B. vs. low-density lipoprotein cholesterol and non-high-density lipoprotein cholesterol as the primary measure of apolipoprotein B lipoprotein-related risk: the debate is over. JAMA Cardiol. 2022;7:257–8.
Patel KV, Pandey A, de Lemos JA. Conceptual Framework for addressing residual atherosclerotic cardiovascular disease risk in the era of Precision Medicine. Circulation. 2018;137(24):2551–3.
Ades PA, Keteyian SJ, Wright JS, Hamm LF, Lui K, Newlin K, Shepard DS, Thomas RJ. Increasing cardiac rehabilitation participation from 20–70%: a road map from the million hearts cardiac rehabilitation collaborative. Mayo Clin Proc. 2017;92(2):234–242.
Ambrosetti M, Abreu A, Corrà U, Davos CH, Hansen D, Frederix I, Iliou MC, Pedretti RFE, Schmid JP, Vigorito C, Voller H, Wilhelm M, Piepoli MF, Bjarnason-Wehrens B, Berger T, Cohen-Solal A, Cornelissen V, Dendale P, Doehner W, Gaita D, Gevaert AB, Kemps H, Kraenkel N, Laukkanen J, Mendes M, Niebauer J, Simonenko M, Zwisler AO. Secondary prevention through comprehensive cardiovascular rehabilitation: from knowledge to implementation. 2020 update. A position paper from the secondary prevention and rehabilitation section of the European Association of Preventive Cardiology. Eur J Prev Cardiol. 2021;28(5):460–95.
Armstrong N, Barker AR. Endurance training and elite young athletes. Med Sport Sci. 2011;56:59–83.
American College of Sports Medicine. American College of Sports Medicine position stand. Progression models in resistance training for healthy adults. Med Sci Sports Exerc. 2009;41(3):687–708.
Buchheit M, Laursen PB. High-intensity interval training, solutions to the programming puzzle: part I: cardiopulmonary emphasis. Sports Med. 2013;43(5):313–3.
Tinken TM, Thijssen DH, Hopkins N, Dawson EA, Cable NT, Green DJ. Shear stress mediates endothelial adaptations to exercise training in humans. Hypertension. 2010;55(2):312–8.
Article CAS PubMed Google Scholar
Iellamo F, Perrone MA, Caminiti G, Volterrani M, Legramante JM. Post-exercise hypotension in patients with coronary artery disease. Front Physiol. 2021;12:788591.
Article PubMed PubMed Central Google Scholar
Caminiti G, Iellamo F, Mancuso A, Cerrito A, Montano M, Manzi V, Volterrani M. Effects of 12 weeks of aerobic versus combined aerobic plus resistance exercise training on short-term blood pressure variability in patients with hypertension. J Appl Physiol (1985). 2021;130(4):1085–92.
Myers J. Cardiology patient pages. Exercise and cardiovascular health. Circulation. 2003;107(1):e2–5.
Biffi A, Gallo G, Fernando F, Sirico F, Signorello MG, De Martino L, Manole GE, Palermi S, Volpe M. Relationship between cardiorespiratory fitness, baseline blood pressure and hypertensive response to exercise in the ferrari corporate population. High Blood Press Cardiovasc Prev. 2022;29(1):81–8.
Bruning RS, Sturek M. Benefits of exercise training on coronary blood flow in coronary artery disease patients. Prog Cardiovasc Dis. 2015;57(5):443–53.
Quindry JC, Franklin BA. Exercise preconditioning as a cardioprotective phenotype. Am J Cardiol. 2021;148:8–15.
Article CAS PubMed Google Scholar
Church TS, Lavie CJ, Milani RV, Kirby GS. Improvements in blood rheology after cardiac rehabilitation and exercise training in patients with coronary heart disease. Am Heart J. 2002;143:349–55.
Elsayegh AT, Karim K, Shabana A. Impact of cardiac rehabilitation programs post primary percutaneous coronary intervention on functional capacity and metabolic profile through different age groups. High Blood Press Cardiovasc Prev. 2023;30(2):145–50.
Article CAS PubMed Google Scholar
Hurdus B, Munyombwe T, Dondo TB, Aktaa S, Oliver G, Hall M, Doherty P, Hall AS, Gale CP. Association of cardiac rehabilitation and health-related quality of life following acute myocardial infarction. Heart. 2020;106(22):1726–31.
Article CAS PubMed Google Scholar
Campos HO, Rodrigues QT, Drummond LR, Lima PMA, Monteiro MDC, Wanner SP, Coimbra CC. Exercise-based cardiac rehabilitation after myocardial revascularization: a systematic review and meta-analysis. Rev Cardiovasc Med. 2022;23(2):74.
Hambrecht R, Walther C, Möbius-Winkler S, Gielen S, Linke A, Conradi K, Erbs S, Kluge R, Kendziorra K, Sabri O, Sick P, Schuler G. Percutaneous coronary angioplasty compared with exercise training in patients with stable coronary artery disease: a randomized trial. Circulation. 2004;109(11):1371–8.
Suaya JA, Stason WB, Ades PA, Normand SL, Shepard DS. Cardiac rehabilitation and survival in older coronary patients. J Am Coll Cardiol. 2009;54(1):25–33.
Jolliffe JA, Rees K, Taylor RS, Thompson D, Oldridge N, Ebrahim S. Exercise-based rehabilitation for coronary heart disease. Cochrane Database Syst Rev. 2001;(1):CD001800. https://doi.org/10.1002/14651858.CD001800. Update in: Cochrane Database Syst Rev. 2011;(7):CD001800.
Anderson L, Oldridge N, Thompson DR, Zwisler AD, Rees K, Martin N, Taylor RS. Exercise-based cardiac rehabilitation for coronary heart disease: cochrane systematic review and meta-analysis. J Am Coll Cardiol. 2016;67(1):1–12.
Dibben GO, Faulkner J, Oldridge N, Rees K, Thompson DR, Zwisler AD, Taylor RS. Exercise-based cardiac rehabilitation for coronary heart disease: a meta-analysis. Eur Heart J. 2023;44(6):452–69.
Article PubMed PubMed Central Google Scholar
Hastings MH, Castro C, Freeman R et al. Intrinsic and extrinsic contributors to the cardiac benefits of exercise. JACC: Basic to Transitional Science. 2023. https://doi.org/10.1016/j.jacbts.2023.07.011
Port S, McEwan P, Cobb FR, Jones RH. Influence of resting left ventricular function on the left ventricular response to exercise in patients with coronary artery disease. Circulation. 1981;63:856–63.
Article CAS PubMed Google Scholar
Höllriegel R, Winzer EB, Linke A, et al. Long-term exercise training in patients with advanced chronic heart failure: sustained benefits on left ventricular performance and exercise capacity. J Cardiopulm Rehabil Prev. 2016;36:117–24.
Besnier F, Labrunée M, Richard L, et al. Short-term effects of a 3-week interval training program on heart rate variability in chronic heart failure. A randomised controlled trial. Ann Phys Rehabil Med. 2019;62:321–8.
Erbs S, Höllriegel R, Linke A, et al. Exercise training in patients with advanced chronic heart failure (NYHA IIIb) promotes restoration of peripheral vasomotor function, induction of endogenous regeneration, and improvement of left ventricular function. Circ Heart Fail. 2010;3:486–94.
Hosseini Mohammadi NS, Shaki Katouli MH, Masoudkabir F, Meysamie A, Tavakol
Comments (0)