Virulence arresting drugs discovery by strategies targeting bacterial virulence: mainly focusing on quorum-sensing interference and biofilm inhibition

The rising prevalence of multidrug-resistant pathogens poses a substantial threat to global healthcare systems, demanding urgent therapeutic interventions. Microorganisms exhibit diverse resistance mechanisms against various classes of antibiotics, highlighting the urgent need to discover novel antimicrobial agents for combating bacterial infections. Anti-virulence therapy has emerged as a promising therapeutic strategy that neutralizes pathogens by targeting their virulence determinants. The strategies for screening virulence arresting drugs (VADs) in bacteria represent a multifaceted approach that involves elucidating molecular pathogenesis mechanisms of bacterial pathogenicity, identifying evolutionarily conserved virulence factors across different pathogens, and employing integrated approaches combining in silico prediction with experimental validation. Recent technological advancements have established standardized protocols for effective identification and validation of anti-virulence compounds. This review systematically examines contemporary screening methodologies, primarily focusing on quorum-sensing disruption and biofilm suppression strategies, including in silico screening, activity-based screening with bioassays, in vitro and in vivo models. Additionally, we emphasize the imperative for standardized preclinical validation through physiologically relevant animal models, while proposing framework recommendations for developing next-generation VAD screening platforms. This synthesis not only outlines current best practices but also proposes innovative avenues for future antimicrobial discovery research.

Comments (0)

No login
gif