Effects of Cardiac Remodeling and Altered Mechanics on Cardiac Outcomes in Fulminant Myocarditis in Children: Insight from a Longitudinal Pilot Study

Puri K, Jentzer JC, Spinner JA et al (2024) Clinical presentation, classification, and outcomes of cardiogenic shock in children. J Am Coll Cardiol 83(5):595–608

Article  PubMed  Google Scholar 

Grün S, Schumm J, Greulich S et al (2012) Longterm follow-up of biopsy-proven viral myocarditis: predictors of mortality and incomplete recovery. J Am Coll Cardiol 59:1604–1615. https://doi.org/10.1016/j.jacc.2012.01.007

Article  PubMed  Google Scholar 

Pollack A, Kontorovich AR, Fuster V, Dec GW (2015) Viral myocarditis: diagnosis, treatment options, and current controversies. Nat Rev Cardiol 12:670–680. https://doi.org/10.1038/nrcardio.2015.108

Article  PubMed  Google Scholar 

McCarthy RE 3rd, Boehmer JP, Hruban RH et al (2000) Long-term outcome of fulminant myocarditis as compared with acute (nonfulminant) myocarditis. N Engl J Med 342(10):690–695. https://doi.org/10.1056/NEJM200003093421003

Article  PubMed  Google Scholar 

Lieberman EB, Hutchins GM, Herskowitz A, Rose NR, Baughman KL (1991) Clinicopathologic description of myocarditis. J Am Coll Cardiol 18(7):1617–1626. https://doi.org/10.1016/0735-1097(91)90493-s

Article  CAS  PubMed  Google Scholar 

Gagliardi MG, Bevilacqua M, Bassano C et al (2004) Long-term follow-up of children with myocarditis treated by immunosuppression and of children with dilated cardiomyopathy. Heart 90(10):1167–1171. https://doi.org/10.1136/hrt.2003.026641

Article  PubMed  PubMed Central  Google Scholar 

Ammirati E, Cipriani M, Lilliu M et al (2017) Survival and left ventricular changes in fulminant versus nonfulminant acute myocarditis. Circulation 136(6):529–545. https://doi.org/10.1161/CIRCULATIONAHA.117.026386

Article  PubMed  Google Scholar 

Westman PC, Lipinski MJ, Luger D et al (2016) Inflammation as a driver of adverse left ventricular remodeling after acute myocardial infarction. J Am Coll Cardiol 67(17):2050–2060. https://doi.org/10.1016/j.jacc.2016.01.073

Article  PubMed  Google Scholar 

Jeinsen V, Short MI, Larson MG, Xanthakis V et al (2020) Prognostic significance of echocardiographic measures of cardiac remodeling. J Am Soc Echocardiogr 33:72

Article  Google Scholar 

Aimo A, Gaggin HK, Barison A, Emdin M, Januzzi JL (2019) Imaging, biomarker and clinical predictors of cardiac remodeling in heart failure with reduced ejection fraction. J Am Coll Cardiol HF 9:782–794

Google Scholar 

Payne AB, Gilani Z, Godfred-Cato S et al (2021) Incidence of multisystem inflammatory syndrome in children among US persons infected With SARS-CoV-2. JAMA Netw Open 4(6):e2116420. https://doi.org/10.1001/jamanetworkopen.2021.16420

Article  PubMed  PubMed Central  Google Scholar 

Dufort EM, Koumans EH, Chow EJ et al (2020) Multisystem inflammatory syndrome in children in New York state. N Engl J Med 383(4):347–358. https://doi.org/10.1056/NEJMoa2021756

Article  CAS  PubMed  Google Scholar 

Belhadjer Z, Méot M, Bajolle F et al (2020) Acute heart failure in multisystem inflammatory syndrome in children in the context of global SARS-CoV-2 pandemic. Circulation 142(5):429–436. https://doi.org/10.1161/CIRCULATIONAHA.120.048360

Article  CAS  PubMed  Google Scholar 

Riphagen S, Gomez X, Gonzalez-Martinez C, Wilkinson N, Theocharis P (2020) Hyperinflammatory shock in children during COVID-19 pandemic. Lancet 395(10237):1607–1608. https://doi.org/10.1016/S0140-6736(20)31094-1

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sperotto F, Friedman KG, Son MBF, VanderPluym CJ, Newburger JW, Dionne A (2021) Cardiac manifestations in SARS-CoV-2-associated multisystem inflammatory syndrome in children: a comprehensive review and proposed clinical approach. Eur J Pediatr 180(2):307–322. https://doi.org/10.1007/s00431-020-03766-6

Article  CAS  PubMed  Google Scholar 

Canter CE, Simpson KE (2014) Diagnosis and treatment of myocarditis in children in the current era. Circulation 129:115–128

Article  PubMed  Google Scholar 

Bonaca MP, Olenchock BA, Salem JE et al (2019) Myocarditis in the setting of cancer therapeutics: proposed case definitions for emerging clinical syndromes in cardio-oncology. Circulation 140(2):80–91. https://doi.org/10.1161/CIRCULATIONAHA.118.034497

Article  PubMed  PubMed Central  Google Scholar 

Barhoum P, Pineton de Chambrun M, Dorgham K et al (2022) Phenotypic heterogeneity of fulminant COVID-19–related myocarditis in adults. J Am Coll Cardiol 80:299–312

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sanil Y, Misra A, Safa R et al (2021) Echocardiographic indicators associated with adverse clinical course and cardiac sequelae in multisystem inflammatory syndrome in children with coronavirus disease 2019. J Am Soc Echocardiogr 34(8):862–876. https://doi.org/10.1016/j.echo.2021.04.018

Article  PubMed  PubMed Central  Google Scholar 

Sagar S, Liu PP, Cooper LT Jr (2012) Myocarditis. Lancet 379:738–747

Article  PubMed  Google Scholar 

Lai WW, Geva T, Shirali GS et al (2006) Guidelines and standards for performance of a pediatric echocardiogram: a report from the Task Force of the Pediatric Council of the American Society of Echocardiography. J Am Soc Echocardiogr 19(12):1413–1430. https://doi.org/10.1016/j.echo.2006.09.001

Article  PubMed  Google Scholar 

Margossian R, Chen S, Sleeper LA et al (2015) The reproducibility and absolute values of echocardiographic measurements of left ventricular size and function in children are algorithm dependent. J Am Soc Echocardiogr 28(5):549-558.e1. https://doi.org/10.1016/j.echo.2015.01.014

Article  PubMed  PubMed Central  Google Scholar 

Devereux RB, Alonso DR, Lutas EM et al (1986) Echocardiographic assessment of left ventricular hypertrophy: comparison to necropsy findings. Am J Cardiol 57(6):450–458. https://doi.org/10.1016/0002-9149(86)90771-x

Article  CAS  PubMed  Google Scholar 

Khoury PR, Mitsnefes M, Daniels SR, Kimball TR (2009) Age-specific reference intervals for indexed left ventricular mass in children. J Am Soc Echocardiogr 22(6):709–714. https://doi.org/10.1016/j.echo.2009.03.003

Article  PubMed  Google Scholar 

Lang RM, Bierig M, Devereux RB, Flachskampf FA, Foster E, Pellikka PA, Picard MH, Roman MJ, Seward J, Shanewise J et al (2006) Recommendations for chamber quantification. Eur J Echocardiogr 7:79–108. https://doi.org/10.1016/j.euje.2005.12.014

Article  PubMed  Google Scholar 

Singh GK, Cupps B, Pasque M, Woodard PK, Holland MR, Ludomirsky A (2010) Accuracy and reproducibility of strain by speckle tracking in pediatric subjects with normal heart and single ventricular physiology: a two-dimensional speckle-tracking echocardiography and magnetic resonance imaging correlative study. J Am Soc Echocardiogr 23:1143–1152

Article  PubMed  PubMed Central  Google Scholar 

Badano LP, Kolias TJ, Muraru D et al (2018) Standardization of left atrial, right ventricular, and right atrial deformation imaging using two-dimensional speckle tracking echocardiography: a consensus document of the EACVI/ASE/Industry Task Force to Standardize Deformation Imaging. Eur Heart J Cardiovasc Imaging 19(6):591–600

Article  PubMed  Google Scholar 

Levy PT, Machefsky A, Sanchez AA et al (2016) Reference ranges of left ventricular strain measures by two-dimensional speckle-tracking echocardiography in children: a systematic review and meta-analysis. J Am Soc Echocardiogr 29(3):209-225.e6. https://doi.org/10.1016/j.echo.2015.11.016

Article  PubMed  Google Scholar 

Sabatino J, Di Salvo G, Prota C et al (2019) Left atrial strain to identify diastolic dysfunction in children with cardiomyopathies. J Clin Med 8(8):1243. https://doi.org/10.3390/jcm8081243)

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jimbo S, Noto N, Okuma H et al (2020) Normal reference values for left atrial strains and strain rates in school children assessed using two-dimensional speckle-tracking echocardiography. Heart Vessels 35:1270–1280. https://doi.org/10.1007/s00380-020-01594-0

Article  PubMed 

Comments (0)

No login
gif