The Effect of Naringin on Cognitive-Behavioral Functions, CREB/BDNF Signaling, Cholinergic Activity, and Neuronal Density in the Hippocampus of an MSG-Induced Obesity Rat Model

Abdollahi H, Edalatmanesh MA, Hosseini E, Foroozanfar M (2021) The effects of hesperidin on BDNF/TrkB signaling pathway and oxidative stress parameters in the cerebral cortex of the Utero-placental insufficiency fetal rat model. Basic Clin Neurosci 12(4):511–522. https://doi.org/10.32598/bcn.2021.2187.1

Article  PubMed  PubMed Central  Google Scholar 

Ahmed S, Khan H, Aschner M, Hasan MM, Hassan STS (2019) Therapeutic potential of naringin in neurological disorders. Food Chem Toxicol 132:110646. https://doi.org/10.1016/j.fct.2019.110646

Article  PubMed  Google Scholar 

Ankul SS, Chandran L, Anuragh S, Kaliappan I, Rushendran R, Vellapandian C (2023) Systematic review of the neuropathology and memory decline induced by monosodium glutamate in the Alzheimer’s disease-like animal model. Front Pharmacol 14:1283440. https://doi.org/10.3389/fphar.2023.1283440

Article  PubMed  PubMed Central  Google Scholar 

Ashok A, Andrabi SS, Mansoor S, Kuang Y, Kwon BK, Labhasetwar V (2022) Antioxidant therapy in oxidative Stress-Induced neurodegenerative diseases: role of Nanoparticle-Based drug delivery systems in clinical translation. Antioxid (Basel) 11(2):408. https://doi.org/10.3390/antiox11020408

Article  Google Scholar 

Bazzari AH, Bazzari FH (2022) BDNF therapeutic mechanisms in neuropsychiatric disorders. Int J Mol Sci 23(15):8417. https://doi.org/10.3390/ijms23158417

Article  PubMed  PubMed Central  Google Scholar 

Fajardo-Fregoso BF, Castañeda-Cabral JL, Beas-Zárate C, Ureña-Guerrero ME (2020) Neonatal excitotoxicity modifies blood-brain barrier properties increasing its susceptibility to hypertonic shock in adulthood. Int J Dev Neurosci 80(4):335–346. https://doi.org/10.1002/jdn.10027

Article  PubMed  Google Scholar 

Gao C, Wu M, Du Q, Deng J, Shen J (2022) Naringin mediates adult hippocampal neurogenesis for antidepression via activating CREB signaling. Front Cell Dev Biol 10:731831. https://doi.org/10.3389/fcell.2022.731831

Article  PubMed  PubMed Central  Google Scholar 

Guimarães ED, de Caires Júnior LC, Musso CM, Macedo de Almeida M, Gonçalves CF, Pettersen KG, Paes ST, González Garcia RM, de Freitas Mathias PC, Torrezan R, Mourao-Júnior CA, Andreazzi AE (2017) Altered behavior of adult obese rats by monosodium l-glutamate neonatal treatment is related to hypercorticosteronemia and activation of hypothalamic ERK1 and ERK2. Nutr Neurosci 20(3):153–160. https://doi.org/10.1179/1476830515Y.0000000004

Article  PubMed  Google Scholar 

Gürgen SG, Sayın O, Çeti NF, Sarsmaz HY, Yazıcı GN, Umur N, Yücel AT (2021) The effect of monosodium glutamate on neuronal signaling molecules in the Hippocampus and the neuroprotective effects of Omega-3 fatty acids. ACS Chem Neurosci 12(16):3028–3037. https://doi.org/10.1021/acschemneuro.1c00308

Article  PubMed  Google Scholar 

Heo HJ, Kim MJ, Lee JM, Choi SJ, Cho HY, Hong B, Kim HK, Kim E, Shin DH (2004) Naringenin from Citrus junos has an inhibitory effect on acetylcholinesterase and a mitigating effect on amnesia. Dement Geriatr Cogn Disord 17(3):151–157. https://doi.org/10.1159/000076349

Article  PubMed  Google Scholar 

Hernández Bautista RJ, Mahmoud AM, Königsberg M, López Díaz Guerrero NE (2019) Obesity: pathophysiology, monosodium glutamate-induced model and anti-obesity medicinal plants. Biomed Pharmacother 111:503–516. https://doi.org/10.1016/j.biopha.2018.12.108

Article  PubMed  Google Scholar 

Kayode OT, Bello JA, Oguntola JA, Kayode AAA, Olukoya DK (2023) The interplay between monosodium glutamate (MSG) consumption and metabolic disorders. Heliyon 9(9):e19675. https://doi.org/10.1016/j.heliyon.2023.e19675

Article  PubMed  PubMed Central  Google Scholar 

Liang Q, Li D, Li J, Li Y, Zou Y, Zhang Y (2024) Protective effect of Danshensu against neurotoxicity induced by monosodium glutamate in adult mice and their offspring. Heliyon 10(3):e25546. https://doi.org/10.1016/j.heliyon.2024.e25546

Article  PubMed  PubMed Central  Google Scholar 

Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 25(4):402–408. https://doi.org/10.1006/meth.2001.1262

Article  PubMed  Google Scholar 

Moghadas M, Edalatmanesh MA, Robati R (2016) Histopathological analysis from Gallic acid administration on hippocampal cell density, depression, and anxiety related behaviors in A Trimethyltin intoxication model. Cell J 17(4):659–667. https://doi.org/10.22074/cellj.2016.3838

Article  PubMed  PubMed Central  Google Scholar 

Moreira NCDS, Lima JEBF, Marchiori MF, Carvalho I, Sakamoto-Hojo ET (2022) Neuroprotective effects of cholinesterase inhibitors: current scenario in therapies for Alzheimer’s disease and future perspectives. J Alzheimers Dis Rep 6(1):177–193. https://doi.org/10.3233/ADR-210061

Article  PubMed  PubMed Central  Google Scholar 

Nabi S, Bhandari U, Haque SE (2022) Saroglitazar ameliorates monosodium glutamate-induced obesity and associated inflammation in Wistar rats: plausible role of NLRP3 inflammasome and NF- ΚB. Iran J Basic Med Sci 25(7):827–841. https://doi.org/10.22038/IJBMS.2022.64041.14102

Article  PubMed  PubMed Central  Google Scholar 

Nicosia N, Giovenzana M, Misztak P, Mingardi J, Musazzi L (2024) Glutamate-Mediated excitotoxicity in the pathogenesis and treatment of neurodevelopmental and adult mental disorders. Int J Mol Sci 25(12):6521. https://doi.org/10.3390/ijms25126521

Article  PubMed  PubMed Central  Google Scholar 

Numakawa T, Kajihara R (2023a) Involvement of brain-derived neurotrophic factor signaling in the pathogenesis of stress-related brain diseases. Front Mol Neurosci 16:1247422. https://doi.org/10.3389/fnmol.2023.1247422

Article  PubMed  PubMed Central  Google Scholar 

Numakawa T, Kajihara R (2023b) Neurotrophins and other growth factors in the pathogenesis of Alzheimer’s disease. Life (Basel) 13(3):647. https://doi.org/10.3390/life13030647

Article  PubMed  Google Scholar 

Oladapo OM, Ben-Azu B, Ajayi AM, Emokpae O, Eneni AO, Omogbiya IA, Iwalewa EO (2021) Naringin confers protection against psychosocial defeat Stress-Induced neurobehavioral deficits in mice: involvement of glutamic acid decarboxylase Isoform-67, Oxido-Nitrergic stress, and neuroinflammatory mechanisms. J Mol Neurosci 71(3):431–445. https://doi.org/10.1007/s12031-020-01664-y

Article  PubMed  Google Scholar 

Olugbemide AS, Ben-Azu B, Bakre AG, Ajayi AM, Femi-Akinlosotu O, Umukoro S (2021) Naringenin improves depressive- and anxiety-like behaviors in mice exposed to repeated hypoxic stress through modulation of oxido-inflammatory mediators and NF-kB/BDNF expressions. Brain Res Bull 169:214–227. https://doi.org/10.1016/j.brainresbull.2020.12.003

Article  PubMed  Google Scholar 

Parfait B, Galba Jean B, Roger P, Hervé Hervé NA, Balbine KK, Guillaume CW, Simon Desire GN, Linda DKJ, Léa Blondelle KD, Germain ST (2022) Antioxidant and Anticholinesterase Properties of the Aqueous Extract of Balanites aegyptiaca L. Delile Fruit Pulp on Monosodium Glutamate-Induced Excitotoxicity in Swiss Mice. Evid Based Complement Alternat Med 2022:7576132. https://doi.org/10.1155/2022/7576132

Pisani A, Paciello F, Del Vecchio V, Malesci R, De Corso E, Cantone E, Fetoni AR (2023) The role of BDNF as a biomarker in cognitive and sensory neurodegeneration. J Pers Med 13(4):652. https://doi.org/10.3390/jpm13040652

Article  PubMed  PubMed Central  Google Scholar 

Sasaki-Hamada S, Hojo Y, Koyama H, Otsuka H, Oka J (2015) Changes in hippocampal synaptic functions and protein expression in monosodium glutamate-treated obese mice during development of glucose intolerance. Eur J Neurosci 41(11):1393–1401. https://doi.org/10.1111/ejn.12891

Article  PubMed  Google Scholar 

Seiva FR, Chuffa LG, Braga CP, Amorim JP, Fernandes AA (2012) Quercetin ameliorates glucose and lipid metabolism and improves antioxidant status in postnatally monosodium glutamate-induced metabolic alterations. Food Chem Toxicol 50(10):3556–3561. https://doi.org/10.1016/j.fct.2012.07.009

Article  PubMed  Google Scholar 

Shilpa VS, Shams R, Dash KK, Pandey VK, Dar AH, Ayaz Mukarram S, Harsányi E, Kovács B (2023) Phytochemical properties, extraction, and Pharmacological benefits of Naringin: A review. Molecules 28(15):5623. https://doi.org/10.3390/molecules28155623

Article  PubMed  PubMed Central  Google Scholar 

Silva MFP, Rafael CP, Mamona Silva JR, Silva E, Alponti TGS, Alves RF, Sandoval PL, Abdalla MRL FMF (2023) The M 1 -muscarinic acetylcholine receptor subtype May play a role in learning and memory performance in the hippocampus of neonatal monosodium glutamate-obese rats. Behav Pharmacol 34(5):251–262. https://doi.org/10.1097/FBP.0000000000000732

Article  PubMed  Google Scholar 

Tabassum S, Ahmad S, Madiha S, Shahzad S, Batool Z, Sadir S, Haider S (2020) Free L-glutamate-induced modulation in oxidative and neurochemical profile contributes to enhancement in locomotor and memory performance in male rats. Sci Rep 10(1):11206. https://doi.org/10.1038/s41598-020-68041-y

Article  PubMed  PubMed Central 

Comments (0)

No login
gif