Abou-Sleiman PM, Muqit MM, Wood NW (2006) Expanding insights of mitochondrial dysfunction in Parkinson’s disease. Nat Rev Neurosci 7(3):207–219. https://doi.org/10.1038/nrn1868
Article CAS PubMed Google Scholar
Ammendolia DA, Bement WM, Brumell JH (2021) Plasma membrane integrity: implications for health and disease. BMC Biol 19(1):71. https://doi.org/10.1186/s12915-021-00972-y
Article CAS PubMed PubMed Central Google Scholar
Bezard E, Dovero S, Prunier C, Ravenscroft P, Chalon S, Guilloteau D, Gross CE (2001) Relationship between the appearance of symptoms and the level of nigrostriatal degeneration in a progressive 1-methyl-4-phenyl-1,2,3,6- tetrahydropyridine-lesioned macaque model of Parkinson’s disease. J Neurosci 21(17):6853–6861. https://doi.org/10.1523/JNEUROSCI.21-17-06853.2001
Article CAS PubMed PubMed Central Google Scholar
Bloem BR, Okun MS, Klein C (2021) Parkinson’s disease. Lancet 397:2284–2303. https://
Article CAS PubMed Google Scholar
Bose A, Beal MF (2016) Mitochondrial dysfunction in Parkinson’s disease. J Neurochem 139(Suppl 1):216–231. https://doi.org/10.1111/jnc.13731
Article CAS PubMed Google Scholar
Chen Q, Chen Y, Zhang Y, Wang F, Yu H, Zhang C, Luo W (2019) Iron deposition in Parkinson’s disease by quantitative susceptibility mapping. BMC Neurosci 20(1):23. https://doi.org/10.1186/s12868-019-0505-9
Article PubMed PubMed Central Google Scholar
Clemens DL, Duryee MJ, Sarmiento C, Chiou A, McGowan JD, Hunter CD, Anderson DR (2018) Novel antioxidant properties of Doxycycline. Int J Mol Sci 19(12):4078. https://doi.org/10.3390/ijms19124078
Article PubMed PubMed Central Google Scholar
Cramb KML, Beccano-Kelly D, Cragg SJ, Wade-Martins R (2023) Impaired dopamine release in Parkinson’s disease. Brain 146(8):3117–3132. https://doi.org/10.1093/brain/awad064
Article PubMed PubMed Central Google Scholar
Devos D, Hirsch E, Wyse R (2021) Seven solutions for neuroprotection in Parkinson’s disease. Mov Disord 36(2):306–316. https://doi.org/10.1002/mds.28379
Dexter DT, Holley AE, Flitter WD, Slater TF, Wells FR, Daniel SE, Lees AJ, Jenner P, Marsden CD (1994) Increased levels of lipid hydroperoxides in the parkinsonian substantia Nigra: an HPLC and ESR study. Mov Disord 9(1):92–97. https://doi.org/10.1002/mds.870090115
Article CAS PubMed Google Scholar
Dias V, Junn E, Mouradian MM (2013) The role of oxidative stress in Parkinson’s disease. J Parkinsons Dis 3(4):461–491. https://doi.org/10.3233/JPD-130230
Article CAS PubMed PubMed Central Google Scholar
Ding D, Wang B, Zhang X, Zhang J, Zhang H, Liu X, Yu Z (2023a) The spread of antibiotic resistance to humans and potential protection strategies. Ecotoxicol Environ Saf 254:114734. https://doi.org/10.1016/j.ecoenv.2023.114734
Article CAS PubMed Google Scholar
Ding XS, Gao L, Han Z, Eleuteri S, Shi W, Shen Y, Wang B (2023b) Ferroptosis in Parkinson’s disease: molecular mechanisms and therapeutic potential. Ageing Res Rev 91:102077. https://doi.org/10.1016/j.arr.2023.10207
Article CAS PubMed Google Scholar
Do Amaral L, Dos Santos NAG, Sisti FM, Del Bel E, Dos Santos AC (2023) Doxycycline inhibits dopaminergic neurodegeneration through upregulation of axonal and synaptic proteins. Naunyn Schmiedebergs Arch Pharmacol 396(8):1787–1796. https://doi.org/10.1007/s00210-023-02435-3
Article CAS PubMed Google Scholar
Do Van B, Gouel F, Jonneaux A, Timmerman K, Gelé P, Pétrault M, Bastide M, Laloux C, Moreau C, Bordet R, Devos D, Devedjia JC (2016) Ferroptosis, a newly characterized form of cell death in Parkinson’s disease that is regulated by PKC. Neurobiol Dis 94:169–178. https://doi.org/10.1016/j.nbd.2016.05.011
Article CAS PubMed Google Scholar
Dominguez-Meijide A, Parrales V, Vasili E, González-Lizárraga F, König A, Lázaro DF, Outeiro TF (2021) Doxycycline inhibits α-synuclein-associated pathologies in vitro and in vivo. Neurobiol Dis 151:105256. https://doi.org/10.1016/j.nbd.2021.105256
Article CAS PubMed Google Scholar
Dos Santos Pereira M, Maitan Santos B, Gimenez R, Guimarães FS, RaismanVozari R, Del Bel E, Michel PP (2024) The two synthetic cannabinoid compounds 4’-F-CBD and HU-910 efficiently restrain inflammatory responses of brain microglia and astrocytes. Glia 72(3):529–545. https://doi.org/10.1002/glia.24489
Article CAS PubMed Google Scholar
Drukarch B, Schepens E, Jongenelen CA, Stoof JC, Langeveld CH (1997) Astrocyte-mediated enhancement of neuronal survival is abolished by glutathione deficiency. Brain Res 770(1–2):123–130. https://doi.org/10.1016/s0006-8993(97)00790-7
Article CAS PubMed Google Scholar
Du Y, Ma Z, Lin S, Dodel RC, Gao F, Bales KR, Paul SM (2001) Minocycline prevents nigrostriatal dopaminergic neurodegeneration in the MPTP model of Parkinson’s disease. Proc Natl Acad Sci USA 98(25):14669–14674. https://doi.org/10.1073/pnas.251341998
Article CAS PubMed PubMed Central Google Scholar
Faure ME, Cilibrizzi A, Abbate V, Bruce KD, Hider RC (2021) Effect of iron chelation on anti-pseudomonal activity of Doxycycline. Int J Antimicrob Agents 58(6):106438. https://doi.org/10.1016/j.ijantimicag.2021.106438
Article CAS PubMed PubMed Central Google Scholar
Feng H, Stockwell BR (2018) Unsolved mysteries: how does lipid peroxidation cause ferroptosis? PLoS Biol 16(5):e2006203. https://doi.org/10.1371/journal.pbio.2006203
Article CAS PubMed PubMed Central Google Scholar
Ferreira Junior NC, Dos Santos Pereira M, Francis N, Ramirez P, Martorell P, González-Lizarraga F, Figadère B, Chehin R, Del Bel E, Raisman-Vozari R, Michel PP (2021) The Chemically-Modified Tetracycline COL-3 and its parent compound Doxycycline prevent microglial inflammatory responses by reducing Glucose-Mediated oxidative stress. Cells 10(8):2163. https://doi.org/10.3390/cells10082163
Article CAS PubMed PubMed Central Google Scholar
Fox SH, Katzenschlager R, Lim SY, Barton B, de Bie RMA, Seppi K, Movement Disorder Society Evidence-Based Medicine Committee (2018) International Parkinson and movement disorder society evidence-based medicine review: update on treatments for the motor symptoms of Parkinson’s disease. Mov Disord 33(8):1248–1266. https://doi.org/10.1002/mds.27372
Article CAS PubMed Google Scholar
Ganguly U, Singh S, Bir A, Ghosh A, Chakrabarti SS, Saini RV, Chakrabarti S (2024) α-synuclein interaction with mitochondria is the final mechanism of ferroptotic death induced by Erastin in SH-SY5Y cells. Free Radic Res 58(3):217–228. https://doi.org/10.1080/10715762.2024.2336563
Article CAS PubMed Google Scholar
Gao M, Yi J, Zhu J, Minikes AM, Monian P, Thompson CB, Jiang X (2019) Role of mitochondria in ferroptosis. Mol Cell 73(2):354–363e3. https://doi.org/10.1016/j.molcel.2018.10.042
Article CAS PubMed Google Scholar
Golub LM, Ramamurthy NS, McNamara TF, Greenwald RA, Rifkin BR (1991) Tetracyclines inhibit connective tissue breakdown: new therapeutic implications for an old family of drugs. Crit Rev Oral Biol Med 2(3):297–321. https://doi.org/10.1177/10454411910020030201
Article CAS PubMed Google Scholar
Grenier D, Huot MP, Mayrand D (2000) Iron-chelating activity of tetracyclines and its impact on the susceptibility of Actinobacillus actinomycetemcomitans to these antibiotics. Antimicrob Agents Chemother 44(3):763–766. https://doi.org/10.1128/AAC.44.3.763-766.2000
Comments (0)