Mechanistic Analysis of Decabromodiphenyl Ether-Induced Neurotoxicity in Humans Using Network Toxicology and Molecular Docking

Amberger JS, Bocchini CA, Scott AF, Hamosh A (2019) OMIM.org: leveraging knowledge across phenotype-gene relationships. Nucleic Acids Res 47:D1038–D1043. https://doi.org/10.1093/nar/gky1151

Article  CAS  PubMed  Google Scholar 

Bardou P, Mariette J, Escudié F, Djemiel C, Klopp C (2014) Jvenn: an interactive Venn diagram viewer. BMC Bioinformatics 15(1):293. https://doi.org/10.1186/1471-2105-15-293

Article  PubMed  PubMed Central  Google Scholar 

Chao HR, Tsou TC, Huang HL, Chang-Chien GP (2011) Levels of breast milk PBDEs from Southern Taiwan and their potential impact on neurodevelopment. Pediatr Res 70(6):596–600. https://doi.org/10.1203/PDR.0b013e3182320b9b

Article  PubMed  Google Scholar 

Chen J, Liufu C, Sun W, Sun X, Chen D (2010) Assessment of the neurotoxic mechanisms of decabrominated Diphenyl ether (PBDE-209) in primary cultured neonatal rat hippocampal neurons includes alterations in second messenger signaling and oxidative stress. Toxicol Lett 192(3):431–439. https://doi.org/10.1016/j.toxlet.2009.11.020

Article  CAS  PubMed  Google Scholar 

Chevrier C, Warembourg C, Le Maner-Idrissi G, Lacroix A, Dardier V, Le Sourn-Bissaoui S, Rouget F, Monfort C, Gaudreau E, Mercier F, Bonvallot N, Glorennec P, Muckle G, Le Bot B, Cordier S (2016) Childhood exposure to polybrominated Diphenyl ethers and neurodevelopment at six years of age. Neurotoxicology 54:81–88. https://doi.org/10.1016/j.neuro.2016.03.002

Article  CAS  PubMed  Google Scholar 

Clough E, Barrett T, Wilhite SE, Ledoux P, Evangelista C, Kim IF, Tomashevsky M, Marshall KA, Phillippy KH, Sherman PM, Lee H, Zhang N, Serova N, Wagner L, Zalunin V, Kochergin A, Soboleva A (2024) NCBI GEO: archive for gene expression and epigenomics data sets: 23-year update. Nucleic Acids Res 52(D1):D138–D144. https://doi.org/10.1093/nar/gkad965

Article  CAS  PubMed  Google Scholar 

Daina A, Michielin O, Zoete V (2019) Nucleic Acids Res 47:W357–W364. https://doi.org/10.1093/nar/gkz382. SwissTargetPrediction: updated data and new features for efficient prediction of protein targets of small molecules

Davis AP, Wiegers TC, Johnson RJ, Sciaky D, Wiegers J, Mattingly CJ (2023) Comparative toxicogenomics database (CTD): update 2023. Nucleic Acids Res 51(D1):D1257–D1262. https://doi.org/10.1093/nar/gkac833

Article  CAS  PubMed  Google Scholar 

EFSA Panel on Contaminants in the Food Chain (CONTAM), Schrenk D, Bignami M, Bodin L, Chipman JK, Del Mazo J, Grasl-Kraupp B, Hogstrand C, Hoogenboom R, Leblanc L, Nebbia JC, Nielsen CS, Ntzani E, Petersen E, Sand A, Schwerdtle S, Wallace T, Benford H, Fürst D, Hart P, Vleminckx A, C (2024) Update of the risk assessment of polybrominated Diphenyl ethers (PBDEs) in food. EFSA journal. Eur Food Saf Auth 22(1):e8497. https://doi.org/10.2903/j.efsa.2024.8497

Article  CAS  Google Scholar 

Eriksson P, Johansson N, Viberg H, Buratovic S, Fredriksson A (2023) Perfluorinated chemicals (PFOA) Can, by interacting with highly brominated Diphenyl ethers (PBDE 209) during a defined period of neonatal brain development, exacerbate neurobehavioural defects. Neurotoxicol Teratol 96:107150. https://doi.org/10.1016/j.ntt.2022.107150

Article  CAS  PubMed  Google Scholar 

Fu L, Shi S, Yi J, Wang N, He Y, Wu Z, Peng J, Deng Y, Wang W, Wu C, Lyu A, Zeng X, Zhao W, Hou T, Cao D (2024) ADMETlab 3.0: an updated comprehensive online ADMET prediction platform enhanced with broader coverage, improved performance, API functionality and decision support. Nucleic Acids Res 52(W1):W422–W431. https://doi.org/10.1093/nar/gkae236

Article  PubMed  PubMed Central  Google Scholar 

Gambrill AC, Barria A (2011) NMDA receptor subunit composition controls synaptogenesis and synapse stabilization. Proc Natl Acad Sci USA 108(14):5855–5860. https://doi.org/10.1073/pnas.1012676108

Article  PubMed  PubMed Central  Google Scholar 

Gascon M, Fort M, Martínez D, Carsin AE, Forns J, Grimalt JO, Marina S, Lertxundi L, Sunyer N, J., Vrijheid M (2012) Polybrominated Diphenyl ethers (PBDEs) in breast milk and neuropsychological development in infants. Environ Health Perspect 120(12):1760–1765. https://doi.org/10.1289/ehp.1205266

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hansen KB, Wollmuth LP, Bowie D, Furukawa H, Menniti FS, Sobolevsky AI, Swanson GT, Swanger SA, Greger IH, Nakagawa T, McBain CJ, Jayaraman V, Low CM, Dell’Acqua ML, Diamond JS, Camp CR, Perszyk RE, Yuan H, Traynelis SF (2021) Structure, function, and Pharmacology of glutamate receptor ion channels. Pharmacol Rev 73(4):298–487. https://doi.org/10.1124/pharmrev.120.000131

Article  PubMed  PubMed Central  Google Scholar 

He J, Yang D, Wang C, Liu W, Liao J, Xu T, Bai C, Chen J, Lin K, Huang C, Dong Q (2011) Chronic zebrafish low dose decabrominated Diphenyl ether (BDE-209) exposure affected parental gonad development and locomotion in F1 offspring. Ecotoxicology 20(8):1813–1822. https://doi.org/10.1007/s10646-011-0720-3

Article  CAS  PubMed  Google Scholar 

Karakuş F, Kuzu B (2024) Predicting the molecular mechanisms of cardiovascular toxicity induced by per- and polyfluoroalkyl substances: an in Silico network toxicology perspective. Toxicol Res 13(6):tfae206. https://doi.org/10.1093/toxres/tfae206

Article  Google Scholar 

Kiciński M, Viaene MK, Hond D, Schoeters E, Covaci G, Dirtu A, Nelen AC, Bruckers V, Croes L, Sioen K, Baeyens I, Van Larebeke W, N., Nawrot TS (2012) Neurobehavioral function and low-level exposure to brominated flame retardants in adolescents: a cross-sectional study. Environ Health: Global Access Sci Source 11:86. https://doi.org/10.1186/1476-069X-11-86

Article  CAS  Google Scholar 

Kim S, Chen J, Cheng T, Gindulyte A, He J, He S, Li Q, Shoemaker BA, Thiessen PA, Yu B, Zaslavsky L, Zhang J, Bolton EE (2023) PubChem 2023 update. Nucleic Acids Res 51(D1):D1373–D1380. https://doi.org/10.1093/nar/gkac956

Article  PubMed  Google Scholar 

Linares V, Bellés M, Domingo JL (2015) Human exposure to PBDE and critical evaluation of health hazards. Arch Toxicol 89(3):335–356. https://doi.org/10.1007/s00204-015-1457-1

Article  CAS  PubMed  Google Scholar 

Mariani A, Fanelli R, Depaolini R, A., De Paola M (2015) Decabrominated Diphenyl ether and Methylmercury impair fetal nervous system development in mice at documented human exposure levels. Dev Neurobiol 75(1):23–38. https://doi.org/10.1002/dneu.22208

Article  CAS  PubMed  Google Scholar 

Martin OV, Evans RM, Faust M, Kortenkamp A (2017) A human mixture risk assessment for neurodevelopmental toxicity associated with polybrominated Diphenyl ethers used as flame retardants. Environ Health Perspect 125(8):087016. https://doi.org/10.1289/EHP826

Article  PubMed  PubMed Central  Google Scholar 

Milić J, Lugonja N, Knudsen TŠ, Marinković V, Avdalović J, Ilić M, Nakano T (2024) Polychlorinated biphenyls and polybrominated Diphenyl ethers in infant food: occurrence and exposure assessment. Sci Total Environ 958:178011 Advance online publication. https://doi.org/10.1016/j.scitotenv.2024.178011

Article  CAS  PubMed  Google Scholar 

Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS, Olson AJ (2009) Autodock4 and AutoDockTools4: automated docking with selective receptor flexiblity. J. Computational Chemistry 2009, 16: 2785-91. https://doi.org/10.1002/jcc.21256

Myung Y, de Sá AGC, Ascher DB (2024) Deep-PK: deep learning for small molecule Pharmacokinetic and toxicity prediction. Nucleic Acids Res 52(W1):W469–W475. https://doi.org/10.1093/nar/gkae254

Article  PubMed  PubMed Central  Google Scholar 

Nguyen HD, Kim MS (2023) In Silico identification of molecular mechanisms for stroke risk caused by heavy metals and their mixtures: sponges and drugs involved. Neurotoxicology 96:222–239. https://doi.org/10.1016/j.neuro.2023.04.011

Article  CAS  PubMed  Google Scholar 

Piñero J, Ramírez-Anguita JM, Saüch-Pitarch J, Ronzano F, Centeno E, Sanz F, Furlong LI (2020) The disgenet knowledge platform for disease genomics: 2019 update. Nucleic Acids Res 48:D845–D855. https://doi.org/10.1093/nar/gkz1021

Article  CAS  PubMed  Google Scholar 

Regan MC, Romero-Hernandez A, Furukawa H (2015) A structural biology perspective on NMDA receptor Pharmacology and function. Curr Opin Struct Biol 33:68–75. https://doi.org/10.1016/j.sbi.2015.07.012

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rellos P, Pike AC, Niesen FH, Salah E, Lee WH, von Delft F, Knapp S (2010) Structure of the camkiidelta/calmodulin complex reveals the molecular mechanism of camkii kinase activation. PLoS Biol 8(7):e1000426. https://doi.org/10.1371/journal.pbio.1000426

Article  CAS  PubMed  PubMed Central  Google Scholar 

Comments (0)

No login
gif