Exploring the potential role of microtubule associated proteins-2 in the pathogenesis of HIV associated neurocognitive disorders

Alakkas A, Ellis RJ, Watson CW, Umlauf A, Heaton RK, Letendre S, Collier A, Marra C, Clifford DB, Gelman B, Sacktor N, Morgello S, Simpson D, McCutchan JA, Kallianpur A, Gianella S, Marcotte T, Grant I, Fennema-Notestine C, Group C (2018) White matter damage, neuroinflammation, and neuronal integrity in HAND. J Neurovirol. https://doi.org/10.1007/s13365-018-0682-9

Ammar Khodja L, Campanacci V, Lippens G, Gigant B (2024) The structure of a Tau fragment bound to tubulin prompts new hypotheses on Tau mechanism and oligomerization. PNAS Nexus 3(11):pgae487. https://doi.org/10.1093/pnasnexus/pgae487

Article  CAS  PubMed  PubMed Central  Google Scholar 

Avdoshina V, Mocchetti I (2022) Recent advances in the molecular and cellular mechanisms of gp120-Mediated neurotoxicity. Cells 11(10). https://doi.org/10.3390/cells11101599

Avdoshina V, Taraballi F, Dedoni S, Corbo C, Paige M, Saygideger Kont Y, Uren A, Tasciotti E, Mocchetti I (2016) Identification of a binding site of the human immunodeficiency virus envelope protein gp120 to neuronal-specific tubulin. J Neurochem 137(2):287–298. https://doi.org/10.1111/jnc.13557

Article  CAS  PubMed  PubMed Central  Google Scholar 

Avdoshina V, Mahoney M, Gilmore SF, Wenzel ED, Anderson A, Letendre SL, Imamichi T, Fischer NO, Mocchetti I (2020) HIV influences microtubule associated protein-2: potential marker of HIV-associated neurocognitive disorders. Aids 34(7):979–988. https://doi.org/10.1097/QAD.0000000000002509

Article  CAS  PubMed  Google Scholar 

Bachis A, Major EO, Mocchetti I (2003) Brain-derived neurotrophic factor inhibits human immunodeficiency virus-1/gp120-mediated cerebellar granule cell death by preventing gp120 internalization [Research Support, U.S. Gov’t, P.H.S]. J Neurosci 23(13):5715–5722. http://www.ncbi.nlm.nih.gov/pubmed/12843275

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bagdadi N, Wu J, Delaroche J, Serre L, Delphin C, De Andrade M, Carcel M, Nawabi H, Pinson B, Verin C, Coute Y, Gory-Faure S, Andrieux A, Stoppin-Mellet V, Arnal I (2024) Stable GDP-tubulin islands rescue dynamic microtubules. J Cell Biol 223(8). https://doi.org/10.1083/jcb.202307074

Binder LI, Frankfurter A, Rebhun LI (1985) The distribution of Tau in the mammalian central nervous system. J Cell Biol 101(4):1371–1378. https://www.ncbi.nlm.nih.gov/pubmed/3930508

Article  CAS  PubMed  Google Scholar 

Cabrera JR, Lucas JJ (2017) MAP2 splicing is altered in Huntington’s disease. Brain Pathol 27(2):181–189. https://doi.org/10.1111/bpa.12387

Article  CAS  PubMed  Google Scholar 

Cambray-Deakin MA, Burgoyne RD (1987) Posttranslational modifications of alpha-tubulin: acetylated and detyrosinated forms in axons of rat cerebellum. J Cell Biol 104(6):1569–1574. https://www.ncbi.nlm.nih.gov/pubmed/3294857

Article  CAS  PubMed  Google Scholar 

D’Andrea MR, Ilyin S, Plata-Salaman CR (2001) Abnormal patterns of microtubule-associated protein-2 (MAP-2) immunolabeling in neuronal nuclei and lewy bodies in Parkinson’s disease substantia Nigra brain tissues. Neurosci Lett 306(3):137–140. https://www.ncbi.nlm.nih.gov/pubmed/11406314

Article  PubMed  Google Scholar 

Darbinian N, Darbinyan A, Merabova N, Selzer ME, Amini S (2020) HIV-1 and HIV-1-Tat induce mitochondrial DNA damage in human neurons. J HIV AIDS 6(1). https://doi.org/10.16966/2380-5536.176

Davies J, Everall IP, Weich S, McLaughlin J, Scaravilli F, Lantos PL (1997) HIV-associated brain pathology in the United Kingdom: an epidemiological study. Aids 11(9):1145–1150. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve%26;db=PubMed%26;dopt=Citation%26;list_uids=9233462

Article  CAS  PubMed  Google Scholar 

DeGiosio RA, Grubisha MJ, MacDonald ML, McKinney BC, Camacho CJ, Sweet RA (2022) More than a marker: potential pathogenic functions of MAP2. Front Mol Neurosci 15:974890. https://doi.org/10.3389/fnmol.2022.974890

Article  CAS  PubMed  PubMed Central  Google Scholar 

DeGiosio RA, Needham PG, Andrews OA, Tristan H, Grubisha MJ, Brodsky JL, Camacho C, Sweet RA (2023) Differential regulation of MAP2 by phosphorylation events in proline-rich versus C-terminal domains. Faseb J 37(10):e23194. https://doi.org/10.1096/fj.202300486R

Article  CAS  PubMed  Google Scholar 

Dehmelt L, Halpain S (2005) The MAP2/Tau family of microtubule-associated proteins. Genome Biol 6(1):204. https://doi.org/10.1186/gb-2004-6-1-204

Article  PubMed  Google Scholar 

Dehmelt L, Smart FM, Ozer RS, Halpain S (2003) The role of microtubule-associated protein 2c in the reorganization of microtubules and lamellipodia during neurite initiation. J Neurosci 23(29):9479–9490. https://doi.org/10.1523/JNEUROSCI.23-29-09479.2003

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dixit R, Ross JL, Goldman YE, Holzbaur EL (2008) Differential regulation of dynein and Kinesin motor proteins by Tau. Science 319(5866):1086–1089. https://doi.org/10.1126/science.1152993

Article  CAS  PubMed  PubMed Central  Google Scholar 

Doll T, Meichsner M, Riederer BM, Honegger P, Matus A (1993) An isoform of microtubule-associated protein 2 (MAP2) containing four repeats of the tubulin-binding motif. J Cell Sci 106(Pt 2):633–639. https://doi.org/10.1242/jcs.106.2.633

Article  CAS  PubMed  Google Scholar 

Drewes G, Ebneth A, Preuss U, Mandelkow EM, Mandelkow E (1997) MARK, a novel family of protein kinases that phosphorylate microtubule-associated proteins and trigger microtubule disruption. Cell 89(2):297–308. https://www.ncbi.nlm.nih.gov/pubmed/9108484

Article  CAS  PubMed  Google Scholar 

Ellis R, Langford D, Masliah E (2007) HIV and antiretroviral therapy in the brain: neuronal injury and repair. Nat Rev Neurosci 8(1):33–44. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve%26;db=PubMed%26;dopt=Citation%26;list_uids=17180161

Article  CAS  PubMed  Google Scholar 

Ellis RJ, Marquine MJ, Kaul M, Fields JA, Schlachetzki JCM (2023) Mechanisms underlying HIV-associated cognitive impairment and emerging therapies for its management. Nat Rev Neurol 19(11):668–687. https://doi.org/10.1038/s41582-023-00879-y

Article  PubMed  PubMed Central  Google Scholar 

Eugenin EA, King JE, Nath A, Calderon TM, Zukin RS, Bennett MV, Berman JW (2007) HIV-tat induces formation of an LRP-PSD-95- NMDAR-nNOS complex that promotes apoptosis in neurons and astrocytes. Proc Natl Acad Sci U S A 104(9):3438–3443. https://doi.org/10.1073/pnas.0611699104

Article  CAS  PubMed  PubMed Central  Google Scholar 

Everall IP, Hansen LA, Masliah E (2005) The shifting patterns of HIV encephalitis neuropathology. Neurotox Res 8(1–2):51–61. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve%26;db=PubMed%26;dopt=Citation%26;list_uids=16260385

Article  CAS  PubMed  Google Scholar 

Garner CC, Tucker RP, Matus A (1988) Selective localization of messenger RNA for cytoskeletal protein MAP2 in dendrites. Nature 336(6200):674–677. https://doi.org/10.1038/336674a0

Article  CAS  PubMed  Google Scholar 

Gelman BB (2015) Neuropathology of HAND with suppressive antiretroviral therapy: encephalitis and neurodegeneration reconsidered. Curr HIV/AIDS Rep 12(2):272–279. https://doi.org/10.1007/s11904-015-0266-8

Article  PubMed  PubMed Central  Google Scholar 

Grubisha MJ, Sun X, MacDonald ML, Garver M, Sun Z, Paris KA, Patel DS, DeGiosio RA, Lewis DA, Yates NA, Camacho C, Homanics GE, Ding Y, Sweet RA (2021) MAP2 is differentially phosphorylated in schizophrenia, altering its function. Mol Psychiatry 26(9):5371–5388. https://doi.org/10.1038/s41380-021-01034-z

Article  CAS  PubMed  PubMed Central  Google Scholar 

Guedes-Dias P, Holzbaur ELF (2019) Axonal transport: driving synaptic function. Science 366(6462). https://doi.org/10.1126/science.aaw9997

Guillaud L, El-Agamy SE, Otsuki M, Terenzio M (2020) Anterograde axonal transport in neuronal homeostasis and disease. Front Mol Neurosci 13:556175. https://doi.org/10.3389/fnmol.2020.556175

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gumy LF, Katrukha EA, Grigoriev I, Jaarsma D, Kapitein LC, Akhmanova A, Hoogenraad CC (2017) MAP2 defines a pre-axonal filtering zone to regulate KIF1- versus KIF5-dependent cargo transport in sensory neurons. Neuron 94(2):347–362e347. https://doi.org/10.1016/j.neuron.2017.03.046

Article  CAS  PubMed 

Comments (0)

No login
gif