Alakkas A, Ellis RJ, Watson CW, Umlauf A, Heaton RK, Letendre S, Collier A, Marra C, Clifford DB, Gelman B, Sacktor N, Morgello S, Simpson D, McCutchan JA, Kallianpur A, Gianella S, Marcotte T, Grant I, Fennema-Notestine C, Group C (2018) White matter damage, neuroinflammation, and neuronal integrity in HAND. J Neurovirol. https://doi.org/10.1007/s13365-018-0682-9
Ammar Khodja L, Campanacci V, Lippens G, Gigant B (2024) The structure of a Tau fragment bound to tubulin prompts new hypotheses on Tau mechanism and oligomerization. PNAS Nexus 3(11):pgae487. https://doi.org/10.1093/pnasnexus/pgae487
Article CAS PubMed PubMed Central Google Scholar
Avdoshina V, Mocchetti I (2022) Recent advances in the molecular and cellular mechanisms of gp120-Mediated neurotoxicity. Cells 11(10). https://doi.org/10.3390/cells11101599
Avdoshina V, Taraballi F, Dedoni S, Corbo C, Paige M, Saygideger Kont Y, Uren A, Tasciotti E, Mocchetti I (2016) Identification of a binding site of the human immunodeficiency virus envelope protein gp120 to neuronal-specific tubulin. J Neurochem 137(2):287–298. https://doi.org/10.1111/jnc.13557
Article CAS PubMed PubMed Central Google Scholar
Avdoshina V, Mahoney M, Gilmore SF, Wenzel ED, Anderson A, Letendre SL, Imamichi T, Fischer NO, Mocchetti I (2020) HIV influences microtubule associated protein-2: potential marker of HIV-associated neurocognitive disorders. Aids 34(7):979–988. https://doi.org/10.1097/QAD.0000000000002509
Article CAS PubMed Google Scholar
Bachis A, Major EO, Mocchetti I (2003) Brain-derived neurotrophic factor inhibits human immunodeficiency virus-1/gp120-mediated cerebellar granule cell death by preventing gp120 internalization [Research Support, U.S. Gov’t, P.H.S]. J Neurosci 23(13):5715–5722. http://www.ncbi.nlm.nih.gov/pubmed/12843275
Article CAS PubMed PubMed Central Google Scholar
Bagdadi N, Wu J, Delaroche J, Serre L, Delphin C, De Andrade M, Carcel M, Nawabi H, Pinson B, Verin C, Coute Y, Gory-Faure S, Andrieux A, Stoppin-Mellet V, Arnal I (2024) Stable GDP-tubulin islands rescue dynamic microtubules. J Cell Biol 223(8). https://doi.org/10.1083/jcb.202307074
Binder LI, Frankfurter A, Rebhun LI (1985) The distribution of Tau in the mammalian central nervous system. J Cell Biol 101(4):1371–1378. https://www.ncbi.nlm.nih.gov/pubmed/3930508
Article CAS PubMed Google Scholar
Cabrera JR, Lucas JJ (2017) MAP2 splicing is altered in Huntington’s disease. Brain Pathol 27(2):181–189. https://doi.org/10.1111/bpa.12387
Article CAS PubMed Google Scholar
Cambray-Deakin MA, Burgoyne RD (1987) Posttranslational modifications of alpha-tubulin: acetylated and detyrosinated forms in axons of rat cerebellum. J Cell Biol 104(6):1569–1574. https://www.ncbi.nlm.nih.gov/pubmed/3294857
Article CAS PubMed Google Scholar
D’Andrea MR, Ilyin S, Plata-Salaman CR (2001) Abnormal patterns of microtubule-associated protein-2 (MAP-2) immunolabeling in neuronal nuclei and lewy bodies in Parkinson’s disease substantia Nigra brain tissues. Neurosci Lett 306(3):137–140. https://www.ncbi.nlm.nih.gov/pubmed/11406314
Darbinian N, Darbinyan A, Merabova N, Selzer ME, Amini S (2020) HIV-1 and HIV-1-Tat induce mitochondrial DNA damage in human neurons. J HIV AIDS 6(1). https://doi.org/10.16966/2380-5536.176
Davies J, Everall IP, Weich S, McLaughlin J, Scaravilli F, Lantos PL (1997) HIV-associated brain pathology in the United Kingdom: an epidemiological study. Aids 11(9):1145–1150. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve%26;db=PubMed%26;dopt=Citation%26;list_uids=9233462
Article CAS PubMed Google Scholar
DeGiosio RA, Grubisha MJ, MacDonald ML, McKinney BC, Camacho CJ, Sweet RA (2022) More than a marker: potential pathogenic functions of MAP2. Front Mol Neurosci 15:974890. https://doi.org/10.3389/fnmol.2022.974890
Article CAS PubMed PubMed Central Google Scholar
DeGiosio RA, Needham PG, Andrews OA, Tristan H, Grubisha MJ, Brodsky JL, Camacho C, Sweet RA (2023) Differential regulation of MAP2 by phosphorylation events in proline-rich versus C-terminal domains. Faseb J 37(10):e23194. https://doi.org/10.1096/fj.202300486R
Article CAS PubMed Google Scholar
Dehmelt L, Halpain S (2005) The MAP2/Tau family of microtubule-associated proteins. Genome Biol 6(1):204. https://doi.org/10.1186/gb-2004-6-1-204
Dehmelt L, Smart FM, Ozer RS, Halpain S (2003) The role of microtubule-associated protein 2c in the reorganization of microtubules and lamellipodia during neurite initiation. J Neurosci 23(29):9479–9490. https://doi.org/10.1523/JNEUROSCI.23-29-09479.2003
Article CAS PubMed PubMed Central Google Scholar
Dixit R, Ross JL, Goldman YE, Holzbaur EL (2008) Differential regulation of dynein and Kinesin motor proteins by Tau. Science 319(5866):1086–1089. https://doi.org/10.1126/science.1152993
Article CAS PubMed PubMed Central Google Scholar
Doll T, Meichsner M, Riederer BM, Honegger P, Matus A (1993) An isoform of microtubule-associated protein 2 (MAP2) containing four repeats of the tubulin-binding motif. J Cell Sci 106(Pt 2):633–639. https://doi.org/10.1242/jcs.106.2.633
Article CAS PubMed Google Scholar
Drewes G, Ebneth A, Preuss U, Mandelkow EM, Mandelkow E (1997) MARK, a novel family of protein kinases that phosphorylate microtubule-associated proteins and trigger microtubule disruption. Cell 89(2):297–308. https://www.ncbi.nlm.nih.gov/pubmed/9108484
Article CAS PubMed Google Scholar
Ellis R, Langford D, Masliah E (2007) HIV and antiretroviral therapy in the brain: neuronal injury and repair. Nat Rev Neurosci 8(1):33–44. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve%26;db=PubMed%26;dopt=Citation%26;list_uids=17180161
Article CAS PubMed Google Scholar
Ellis RJ, Marquine MJ, Kaul M, Fields JA, Schlachetzki JCM (2023) Mechanisms underlying HIV-associated cognitive impairment and emerging therapies for its management. Nat Rev Neurol 19(11):668–687. https://doi.org/10.1038/s41582-023-00879-y
Article PubMed PubMed Central Google Scholar
Eugenin EA, King JE, Nath A, Calderon TM, Zukin RS, Bennett MV, Berman JW (2007) HIV-tat induces formation of an LRP-PSD-95- NMDAR-nNOS complex that promotes apoptosis in neurons and astrocytes. Proc Natl Acad Sci U S A 104(9):3438–3443. https://doi.org/10.1073/pnas.0611699104
Article CAS PubMed PubMed Central Google Scholar
Everall IP, Hansen LA, Masliah E (2005) The shifting patterns of HIV encephalitis neuropathology. Neurotox Res 8(1–2):51–61. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve%26;db=PubMed%26;dopt=Citation%26;list_uids=16260385
Article CAS PubMed Google Scholar
Garner CC, Tucker RP, Matus A (1988) Selective localization of messenger RNA for cytoskeletal protein MAP2 in dendrites. Nature 336(6200):674–677. https://doi.org/10.1038/336674a0
Article CAS PubMed Google Scholar
Gelman BB (2015) Neuropathology of HAND with suppressive antiretroviral therapy: encephalitis and neurodegeneration reconsidered. Curr HIV/AIDS Rep 12(2):272–279. https://doi.org/10.1007/s11904-015-0266-8
Article PubMed PubMed Central Google Scholar
Grubisha MJ, Sun X, MacDonald ML, Garver M, Sun Z, Paris KA, Patel DS, DeGiosio RA, Lewis DA, Yates NA, Camacho C, Homanics GE, Ding Y, Sweet RA (2021) MAP2 is differentially phosphorylated in schizophrenia, altering its function. Mol Psychiatry 26(9):5371–5388. https://doi.org/10.1038/s41380-021-01034-z
Article CAS PubMed PubMed Central Google Scholar
Guedes-Dias P, Holzbaur ELF (2019) Axonal transport: driving synaptic function. Science 366(6462). https://doi.org/10.1126/science.aaw9997
Guillaud L, El-Agamy SE, Otsuki M, Terenzio M (2020) Anterograde axonal transport in neuronal homeostasis and disease. Front Mol Neurosci 13:556175. https://doi.org/10.3389/fnmol.2020.556175
Article CAS PubMed PubMed Central Google Scholar
Gumy LF, Katrukha EA, Grigoriev I, Jaarsma D, Kapitein LC, Akhmanova A, Hoogenraad CC (2017) MAP2 defines a pre-axonal filtering zone to regulate KIF1- versus KIF5-dependent cargo transport in sensory neurons. Neuron 94(2):347–362e347. https://doi.org/10.1016/j.neuron.2017.03.046
Comments (0)