Liu SY, Zeng FF, Chen ZW, Wang CY, Zhao B, Li KS. Vascular endothelial growth factor gene promoter polymorphisms and Alzheimer’s disease risk: a meta-analysis. CNS Neurosci Ther 2013, 19: 469–476.
Article CAS PubMed PubMed Central Google Scholar
Davis JN 2nd, Chisholm JC. Alois Alzheimer and the amyloid debate. Nature 1999, 400: 810.
Brody H. Alzheimer’s disease. Nature 2011, 475: S1.
Article CAS PubMed Google Scholar
Betts MJ, Kirilina E, Otaduy MCG, Ivanov D, Acosta-Cabronero J, Callaghan MF. Locus coeruleus imaging as a biomarker for noradrenergic dysfunction in neurodegenerative diseases. Brain 2019, 142: 2558–2571.
Article PubMed PubMed Central Google Scholar
Peng A, Gao Y, Zhuang X, Lin Y, He W, Wang Y, et al. Bazhu decoction, a traditional Chinese medical formula, ameliorates cognitive deficits in the 5xFAD mouse model of Alzheimer’s disease. Front Pharmacol 2019, 10: 1391.
Article CAS PubMed PubMed Central Google Scholar
Muñoz-Mayorga D, Guerra-Araiza C, Torner L, Morales T. Tau phosphorylation in female neurodegeneration: role of estrogens, progesterone, and prolactin. Front Endocrinol 2018, 9: 133.
Parodi J, Sepúlveda FJ, Roa J, Opazo C, Inestrosa NC, Aguayo LG. β-amyloid causes depletion of synaptic vesicles leading to neurotransmission failure. J Biol Chem 2010, 285: 2506–2514.
Article CAS PubMed Google Scholar
Li Y, Zhou W, Tong Y, He G, Song W. Control of APP processing and Abeta generation level by BACE1 enzymatic activity and transcription. FASEB J 2006, 20: 285–292.
Zhang S, Wang Z, Cai F, Zhang M, Wu Y, Zhang J, et al. BACE1 cleavage site selection critical for amyloidogenesis and Alzheimer’s pathogenesis. J Neurosci 2017, 37: 6915–6925.
Article CAS PubMed PubMed Central Google Scholar
Kuhn AJ, Chan K, Sajimon M, Yoo S, Balasco Serrão VH, Lee J, et al. Amyloid-α peptide formed through alternative processing of the amyloid precursor protein attenuates Alzheimer’s amyloid-β toxicity via cross-chaperoning. J Am Chem Soc 2024, 146: 2634–2645.
Article CAS PubMed Google Scholar
O’Brien RJ, Wong PC. Amyloid precursor protein processing and Alzheimer’s disease. Annu Rev Neurosci 2011, 34: 185–204.
Article PubMed PubMed Central Google Scholar
Guo XF, Li HT, Yan C, Lei J, Zhou R, Shi YG. Molecular mechanism of substrate recognition and cleavage by human γ-secretase. Science 2024, 384: 1091–1095.
Article CAS PubMed Google Scholar
Wang JF, Lu R, Wang YZ. Regulation of β cleavage of amyloid precursor protein. Neurosci Bull 2010, 26: 417–427.
Article PubMed PubMed Central Google Scholar
Nakamura M, Li Y, Choi BR, Matas-Rico E, Troncoso J, Takahashi C, et al. GDE2-RECK controls ADAM10 α-secretase-mediated cleavage of amyloid precursor protein. Sci Transl Med 2021, 13: 6178.
Kuhn PH, Wang H, Dislich B, Colombo A, Zeitschel U, Ellwart JW, et al. ADAM10 is the physiologically relevant, constitutive alpha-secretase of the amyloid precursor protein in primary neurons. EMBO J 2010, 29: 3020–3032.
Article CAS PubMed PubMed Central Google Scholar
Rosenbaum D, Saftig P. New insights into the function and pathophysiology of the ectodomain sheddase A Disintegrin And Metalloproteinase 10 (ADAM10). FEBS J 2024, 291: 2733–2766.
Article CAS PubMed Google Scholar
Jansen IE, Savage JE, Watanabe K, Bryois J, Williams DM, Steinberg S, et al. Genome-wide meta-analysis identifies new loci and functional pathways influencing Alzheimer’s disease risk. Nat Genet 2019, 51: 404–413.
Article CAS PubMed PubMed Central Google Scholar
Marcello E, Saraceno C, Musardo S, Vara H, de la Fuente AG, Pelucchi S, et al. Endocytosis of synaptic ADAM10 in neuronal plasticity and Alzheimer’s disease. J Clin Invest 2013, 123: 2523–2538.
Article CAS PubMed PubMed Central Google Scholar
Bekris LM, Lutz F, Li G, Galasko DR, Farlow MR, Quinn JF, et al. ADAM10 expression and promoter haplotype in Alzheimer’s disease. Neurobiol Aging 2012, 33(2229): e1-2229.e9.
Wang J, Sun BL, Xiang Y, Tian DY, Zhu C, Li WW, et al. Capsaicin consumption reduces brain amyloid-beta generation and attenuates Alzheimer’s disease-type pathology and cognitive deficits in APP/PS1 mice. Transl Psychiatry 2020, 10: 230.
Article CAS PubMed PubMed Central Google Scholar
Baltissen D, Bold CS, Rehra L, Banićević M, Fricke J, Just J, et al. APPsα rescues CDK5 and GSK3β dysregulation and restores normal spine density in Tau transgenic mice. Front Cell Neurosci 2023, 17: 1106176.
Article CAS PubMed PubMed Central Google Scholar
Zhang Q, Xing M, Bao Z, Xu L, Bai Y, Chen W, et al. Contactin-associated protein-like 2 (CNTNAP2) mutations impair the essential α-secretase cleavages, leading to autism-like phenotypes. Signal Transduct Target Ther 2024, 9: 51.
Article CAS PubMed PubMed Central Google Scholar
Jin N, Qian W, Yin X, Zhang L, Iqbal K, Grundke-Iqbal I, et al. CREB regulates the expression of neuronal glucose transporter 3: a possible mechanism related to impaired brain glucose uptake in Alzheimer’s disease. Nucleic Acids Res 2013, 41: 3240–3256.
Article CAS PubMed PubMed Central Google Scholar
Patterson AG, Chang JT, Taylor C, Fineran PC. Regulation of the Type I-F CRISPR-Cas system by CRP-cAMP and GalM controls spacer acquisition and interference. Nucleic Acids Res 2015, 43: 6038–6048.
Article CAS PubMed PubMed Central Google Scholar
Haskovic M, Coelho AI, Bierau J, Vanoevelen JM, Steinbusch LKM, Zimmermann LJI, et al. Pathophysiology and targets for treatment in hereditary galactosemia: a systematic review of animal and cellular models. J Inherit Metab Dis 2020, 43: 392–408.
Article CAS PubMed PubMed Central Google Scholar
Haskovic M, Coelho AI, Lindhout M, Zijlstra F, Veizaj R, Vos R, et al. Nucleotide sugar profiles throughout development in wildtype and Galt knockout zebrafish. J Inherit Metab Dis 2020, 43: 994–1001.
Article CAS PubMed PubMed Central Google Scholar
Solopova A, Bachmann H, Teusink B, Kok J, Kuipers OP. Further elucidation of galactose utilization in Lactococcus lactis MG1363. Front Microbiol 1803, 2018: 9.
Kikuchi A, Wada Y, Ohura T, Kure S. The discovery of GALM deficiency (type IV galactosemia) and newborn screening system for galactosemia in Japan. Int J Neonatal Screen 2021, 7: 68.
Article PubMed PubMed Central Google Scholar
Lou D, Du Y, Huang D, Cai F, Zhang Y, Li T, et al. Traumatic brain injury alters the metabolism and facilitates Alzheimer’s disease in a murine model. Mol Neurobiol 2018, 55: 4928–4939.
Article CAS PubMed Google Scholar
Hou Y, Ding X, Hou W, Song B, Yan X. Structure elucidation and antitumor activity of a new polysaccharide from Maerkang Tricholoma matsutake. Int J Biol Sci 2017, 13: 935–948.
Article CAS PubMed PubMed Central Google Scholar
Du Y, Du Y, Zhang Y, Huang Z, Fu M, Li J, et al. MKP-1 reduces Aβ generation and alleviates cognitive impairments in Alzheimer’s disease models. Signal Transduct Target Ther 2019, 4: 58.
Comments (0)