A Personalized Predictor of Motor Imagery Ability Based on Multi-frequency EEG Features

Xiao J, Pan J, He Y, Xie Q, Yu T, Huang H. Visual fixation assessment in patients with disorders of consciousness based on brain-computer interface. Neurosci Bull 2018, 34: 679–690.

Article  PubMed  PubMed Central  Google Scholar 

Lorach H, Galvez A, Spagnolo V, Martel F, Karakas S, Intering N, et al. Walking naturally after spinal cord injury using a brain-spine interface. Nature 2023, 618: 126–133.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Li J, Shen J, Liu S, Chauvel M, Yang W, Mei J, et al. Responses of patients with disorders of consciousness to habit stimulation: A quantitative EEG study. Neurosci Bull 2018, 34: 691–699.

Article  PubMed  PubMed Central  Google Scholar 

Yeh CH, Zhang C, Shi W, Zhang B, An J. Quantifying sharpness and nonlinearity in neonatal seizure dynamics. Cyborg Bionic Syst 2024, 5: 0076.

Article  PubMed  PubMed Central  Google Scholar 

Putzolu M, Samogin J, Bonassi G, Cosentino C, Mezzarobba S, Botta A, et al. Motor imagery ability scores are related to cortical activation during gait imagery. Sci Rep 2024, 14: 5207.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Tong X, Wang Y, Tong SX. Neurocognitive correlates of statistical learning of orthographic-semantic connections in Chinese adult learners. Neurosci Bull 2020, 36: 895–906.

Article  PubMed  PubMed Central  Google Scholar 

Zhang H, Xie J, Xiao Y, Cui G, Zhu X, Xu G, et al. The effects of synchronous and asynchronous steady-state auditory-visual motion on EEG characteristics in healthy young adults. Expert Syst Appl 2024, 241: 122640.

Article  Google Scholar 

Kwon S, Kim J, Kim T. Neuropsychological activations and networks while performing visual and kinesthetic motor imagery. Brain Sci 2023, 13: 983.

Article  PubMed  PubMed Central  Google Scholar 

Park CH, Chang WH, Lee M, Kwon GH, Kim L, Kim ST, et al. Predicting the performance of motor imagery in stroke patients: Multivariate pattern analysis of functional MRI data. Neurorehabil Neural Repair 2015, 29: 247–254.

Article  PubMed  Google Scholar 

Wang L, Zheng WM, Liang TF, Yang YH, Yang BN, Chen X, et al. Brain activation evoked by motor imagery in pediatric patients with complete spinal cord injury. AJNR Am J Neuroradiol 2023, 44: 611–617.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Ren S, Wang W, Hou ZG, Liang X, Wang J, Shi W. Enhanced motor imagery based brain- computer interface via FES and VR for lower limbs. IEEE Trans Neural Syst Rehabil Eng 2020, 28: 1846–1855.

Article  PubMed  Google Scholar 

Rezaei E, Shalbaf A. Classification of right/left hand motor imagery by effective connectivity based on transfer entropy in electroencephalogram signal. Basic Clin Neurosci 2023, 14: 213–224.

Article  PubMed  PubMed Central  Google Scholar 

Xu F, Dong G, Li J, Yang Q, Wang L, Zhao Y, et al. Deep convolution generative adversarial network-based electroencephalogram data augmentation for post-stroke rehabilitation with motor imagery. Int J Neural Syst 2022, 32: 2250039.

Article  PubMed  Google Scholar 

Bian Y, Zhao L, Li J, Guo T, Fu X, Qi H. Improvements in classification of left and right foot motor intention using modulated steady-state somatosensory evoked potential induced by electrical stimulation and motor imagery. IEEE Trans Neural Syst Rehabil Eng 2023, 31: 150–159.

Article  PubMed  Google Scholar 

Hu M, Cheng HJ, Ji F, Chong JSX, Lu Z, Huang W, et al. Brain functional changes in stroke following rehabilitation using brain-computer interface-assisted motor imagery with and without tDCS: A pilot study. Front Hum Neurosci 2021, 15: 692304.

Article  PubMed  PubMed Central  Google Scholar 

Song M, Jeong H, Kim J, Jang SH, Kim J. An EEG-based asynchronous MI-BCI system to reduce false positives with a small number of channels for neurorehabilitation: A pilot study. Front Neurorobot 2022, 16: 971547.

Article  PubMed  PubMed Central  Google Scholar 

Oostra KM, Van Bladel A, Vanhoonacker ACL, Vingerhoets G. Damage to Fronto-parietal networks impairs motor imagery ability after stroke: A voxel-based lesion symptom mapping study. Front Behav Neurosci 2016, 10: 5.

Article  PubMed  PubMed Central  Google Scholar 

Jongsma MLA, Meulenbroek RGJ, Okely J, Baas CM, van der Lubbe RHJ, Steenbergen B. Effects of hand orientation on motor imagery—event related potentials suggest kinesthetic motor imagery to solve the hand laterality judgment task. PLoS One 2013, 8: e76515.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Vidaurre C, Haufe S, Jorajuría T, Müller KR, Nikulin VV. Sensorimotor functional connectivity: A neurophysiological factor related to BCI performance. Front Neurosci 2020, 14: 575081.

Article  PubMed  PubMed Central  Google Scholar 

Shun S, Fujikawa S, Ushio R, Tamura K, Ohsumi C, Yamamoto R, et al. Repetitive peripheral magnetic stimulation combined with motor imagery changes resting-state EEG activity: A randomized controlled trial. Brain Sci 2022, 12: 1548.

Article  Google Scholar 

Nakano H, Tachibana M, Fujita N, Shun S, Fujikawa S, Yamamoto R, et al. Reliability and validity of the Japanese movement imagery questionnaire-revised second version. BMC Res Notes 2022, 15: 334.

Article  PubMed  PubMed Central  Google Scholar 

de Vries S, Tepper M, Feenstra W, Oosterveld H, Boonstra AM, Otten B. Motor imagery ability in stroke patients: The relationship between implicit and explicit motor imagery measures. Front Hum Neurosci 2013, 7: 790.

Article  PubMed  PubMed Central  Google Scholar 

Zhang R, Yao D, Valdés-Sosa PA, Li F, Li P, Zhang T, et al. Efficient resting-state EEG network facilitates motor imagery performance. J Neural Eng 2015, 12: 066024.

Article  PubMed  Google Scholar 

Chen LM. Cortical representation of pain and touch: Evidence from combined functional neuroimaging and electrophysiology in non-human Primates. Neurosci Bull 2018, 34: 165–177.

Article  PubMed  CAS  Google Scholar 

Wang K, Tian F, Xu M, Zhang S, Xu L, Ming D. Resting-state EEG in alpha rhythm may be indicative of the performance of motor imagery-based brain-computer interface. Entropy (Basel) 2022, 24: 1556.

Article  PubMed  Google Scholar 

Tzdaka E, Benaroch C, Jeunet C, Lotte F. Assessing the relevance of neurophysiological patterns to predict motor imagery-based BCI users’ performance. 2020 IEEE International Conference on Systems, Man, and Cybernetics (SMC). October 11-14, 2020, Toronto, ON, Canada. IEEE, 2020: 2490–2495.

Liu Y, Chen C, Belkacem AN, Wang Z, Cheng L, Wang C, et al. Motor imagination of lower limb movements at different frequencies. J Healthc Eng 2021, 2021: 4073739.

Article  PubMed  PubMed Central  Google Scholar 

Zhang X, Guo Y, Gao B, Long J. Alpha frequency intervention by electrical stimulation to improve performance in mu-based BCI. IEEE Trans Neural Syst Rehabil Eng 2020, 28: 1262–1270.

Article  PubMed  Google Scholar 

Stefano Filho CA, Attux R, Castellano G. EEG sensorimotor rhythms’ variation and functional connectivity measures during motor imagery: Linear relations and classification approaches. PeerJ 2017, 5: e3983.

Article  PubMed  PubMed Central  Google Scholar 

Li M, Zuo H, Zhou H, Xu G, Qi E. A study of action difference on motor imagery based on delayed matching posture task. J Neural Eng 2023, 20: 016031.

Article  Google Scholar 

Sun H. Prediction of building energy consumption based on BP neural network. Wirel Commun Mob Comput 2022, 2022: 7876013.

Google Scholar 

Hammer EM, Halder S, Blankertz B, Sannelli C, Dickhaus T, Kleih S, et al. Psychological predictors of SMR-BCI performance. Biol Psychol 2012, 89: 80–86.

Article  PubMed  Google Scholar 

Guger C, Edlinger G, Harkam W, Niedermayer I, Pfurtscheller G. How many people are able to operate an EEG-based brain-computer interface (BCI)? IEEE Trans Neural Syst Rehabil Eng 2003, 11: 145–147.

Article  PubMed  CAS 

Comments (0)

No login
gif