Three-dimensional surface structure reconstruction of reflective objects using multi-stage deep learning

Curless, B.: From range scans to 3D models. Comput. Graph. 33, 38–41 (1999)

Article  Google Scholar 

Sansoni, G., Trebeschi, M., Docchio, F.: State-of-the-art and applications of 3D imaging sensors in industry, cultural heritage, medicine, and criminal investigation. Sensors 9, 568–601 (2009)

Article  ADS  MATH  Google Scholar 

Vazquez-Arellano, M., Griepentrog, H.W., Reiser, D., Paraforos, D.S.: 3-D imaging systems for agricultural applications—A review. Sensors 16, 618 (2016)

Article  ADS  Google Scholar 

S Shafer, “Using Color to Separate Reflection Components”, Jones and Bartlett Publishers, Inc. (1992).

Y. Akashi and T. Okatani, “Separation of reflection components by sparse non-negative matrix factorization,” in Proc. 12th Asian Conf. Comput. Vis. (ACCV), Singapore, 611–625 (2014).

Yamamoto, T., Nakazawa, A.: General improvement method of specular component separation using high-emphasis filter and similarity function. ITE Trans. Media Technol. Appl. 7, 92–102 (2019)

MATH  Google Scholar 

Ramos, V.S., Silveira Junior, L.G.D.Q., Silveira, L.F.D.Q.: Single image highlight removal for real-time image processing pipelines. IEEE Access 8, 3240–3254 (2020)

Article  MATH  Google Scholar 

Spoorthi, G.E., Gorthi, S., Gorthi, R.K.S.S.: PhaseNet: A deep convolutional neural network for two-dimensional phase unwrapping. IEEE Signal Process. Lett. 26, 54–58 (2019)

Article  ADS  MATH  Google Scholar 

Spoorthi, G.E., Gorthi, R.K.S.S., Gorthi, S.: PhaseNet 2.0: Phase unwrapping of noisy data based on deep learning approach. IEEE Trans. Image Process. 29, 4862–4872 (2020)

Article  ADS  MATH  Google Scholar 

Wang, K., Li, Y., Qian, K., Di, J., Zhao, J.: One-step robust deep learning phase unwrapping. Opt. Express 27, 15100–15115 (2019)

Article  ADS  Google Scholar 

Van der Jeught, S., Dirckx, J.J.: Deep neural networks for single shot structured light profilometry. Opt. Express 27, 17091–17101 (2019)

Article  ADS  Google Scholar 

Deng, B., et al.: FDU-Net: Deep learning-based three-dimensional diffuse optical image reconstruction. IEEE Trans. Med. Imaging 42(8), 2439–2450 (2023)

Article  MATH  Google Scholar 

Vaishnavi Ravi, R.K.: Gorthi, “CF3DNet: A learning-based approach for single-shot 3D reconstruction from circular fringes.” Opt. Laser Eng. 167, 107597 (2023)

Article  MATH  Google Scholar 

P Isola, JY Zhu, TH Zhou, AA Efros, “Image-to-image translation with conditional adversarial networks,” in Proc. 30th IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), Honolulu, HI, 5967–5976 (2017).

A Lou, S Guan, MH Loew, “DC-UNet: Rethinking the U-Net architecture with dual channel efficient CNN for medical image segmentation,” in Proc. Medical Imaging 2021: Image Process., Int. Soc. Opt. Photon. (SPIE 11596), 115961F (2021)

Nguyen, H., Ly, K.L., Tran, T., et al.: hNet: Single-shot 3D shape reconstruction using structured light and h-shaped global guidance network. Results Opt. 4, 100104 (2021)

Article  MATH  Google Scholar 

Zhang, Z.H.: Review of single-shot 3D shape measurement by phase calculation-based fringe projection techniques. Opt. Laser Eng. 50, 1097–1106 (2012)

Article  ADS  MATH  Google Scholar 

Su, X.Y., Chen, W.J.: Reliability-guided phase unwrapping algorithm: A review. Opt. Laser Eng. 42, 245–261 (2004)

Article  MATH  Google Scholar 

J Lin, MEA Seddik, M Tamaazousti, Y Tamaazousti, A Bartoli, 2019 “Deep multi-class adversarial specularity removal,” in Image Analysis: 21st Scandinavian Conf. (SCIA 2019), Norrköping, Sweden, 3–15

J Johnson, A Alahi, FF. Li, (2016) “Perceptual losses for real-time style transfer and super-resolution,” in Proc. 14th Eur. Conf. Comput. Vis. (ECCV), Amsterdam, Netherlands, 694–711

D Kinga, JB Adam, (2015) “A method for stochastic optimization,” in Proc. Int. Conf. Learn. Represent. (ICLR), San Diego, CA, 6

Comments (0)

No login
gif