Marr, D.: Vision: A Computational Investigation into the Human Representation and Processing of Visual Information. Henry Holt and Company, Inc Press, New York, NY, USA (1982)
Kim, H., Hong, K.S.: Robust image mosaicing of soccer videos using self-calibration and line tracking. Pattern Anal. Appl. 4(1), 9–19 (2001). https://doi.org/10.1007/s100440170020
Article MathSciNet MATH Google Scholar
Wong, S.S., Chan, K.L.: 3D object model reconstruction from image sequence based on photometric consistency in volume space. Pattern Anal. Appl. 13(4), 437–450 (2010). https://doi.org/10.1007/s10044-009-0173-y
Article MathSciNet MATH Google Scholar
Zhang, S., Li, B., Ren, F., Dong, R.: High-precision measurement of binocular telecentric vision system with novel calibration and matching methods. IEEE Access. 7(2), 54682–54692 (2019). https://doi.org/10.1109/ACCESS.2019.2913181
Kang, M.C., Yoo, C.H., Uhm, K.H., Lee, D.H., Ko, S.J.: A robust extrinsic calibration method for non-contact gaze tracking in the 3-D space. IEEE Access. 6(8), 48840–48849 (2018). https://doi.org/10.1109/ACCESS.2018.2867235
Pribanić, T., Petković, T., Đonlić, M.: 3D registration based on the direction sensor measurements. Pattern Recogn. 88(4), 532–546 (2019). https://doi.org/10.1016/j.patcog.2018.12.008
Article ADS MATH Google Scholar
Wei, M.Q., Yan, Q.A., Luo, F., Song, C.F., Xiao, C.X.: Joint bilateral propagation upsampling for unstructured multi-view stereo. Vis. Comput. 35(6), 797–809 (2019). https://doi.org/10.1007/s00371-019-01688-5
Hui, T.W., Chung, R.: Determining shape and motion from monocular camera: A direct approach using normal flows. Pattern Recogn. 48(2), 422–437 (2015). https://doi.org/10.1016/j.patcog.2014.08.012
Article ADS MATH Google Scholar
Peng, E., Li, L.: Camera calibration using one-dimensional information and its applications in both controlled and uncontrolled environments. Pattern Recogn. 43(3), 1188–1198 (2010). https://doi.org/10.1016/j.patcog.2009.08.003
Article ADS MATH Google Scholar
Maybank, S.J., Faugeras, O.D.: A theory of self-calibration of a moving camera. Int. J. Comput. Vision 8(2), 123–151 (1992). https://doi.org/10.1007/BF00127171
B. Triggs. Autocalibration and the absolute quadric. Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition. 1997; 609–614. https://doi.org/10.1109/CVPR.1997.609388.
Zhang, Z.: A flexible new technique for camera calibration. IEEE Trans. Pattern Anal. Mach. Intell. 22(11), 1330–1334 (2000). https://doi.org/10.1109/34.888718
Huang, H.F., Zhang, H., Cheung, Y.M.: The common self-polar triangle of concentric circles and its application to camera calibration. IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2015, 4065–4072 (2015). https://doi.org/10.1109/CVPR.2015.7299033
P. Gurdjos, P. Sturm, Y. H. Wu. Euclidean structure from parallel circles: Theory and algorithms. European Conference on Computer Vision. 2006; 238–252. https://doi.org/10.1007/11744023_19.
Chen, X., Zhao, Y.: The projected circle centres and polar line for camera self-calibration. Optik 126(20), 2565–2570 (2015). https://doi.org/10.1016/j.ijleo.2015.06.036
Article ADS MATH Google Scholar
Meng, X.Q., Hu, Z.Y.: A new easy camera calibration technique based on circular points. Pattern Recogn. 36(5), 1155–1164 (2003). https://doi.org/10.1016/S0031-3203(02)00225-X
Article ADS MATH Google Scholar
F. Guo. Plane rectification using a circle and points from a single view. 18th International Conference on Pattern Recognition (ICPR'06). 2006; 9–12. https://doi.org/10.1109/ICPR.2006.936.
Q. H. Li, Y. P. Luo. Automatic camera calibration for images of soccer match. International Conference on Computational Intelligence. 2007; 170–173.
Alemán-Flores, M., Alvarez, L., Gomez, L., Henriquez, P., Mazorra, L.: Camera calibration in sport event scenarios. Pattern Recogn. 47(1), 89–95 (2014). https://doi.org/10.1016/j.patcog.2013.05.011
Article ADS MATH Google Scholar
Ying, X.H., Zha, H.B.: Camera calibration from a circle and a coplanar point at infinity with applications to sports scenes analyses. IEEE/RSJ Int. Conf. Intell. Rob. Syst. 2007, 220–225 (2007). https://doi.org/10.1109/IROS.2007.4399329
Grum, M., Bors, A.G.: 3D modeling of multiple-object scenes from sets of images. Pattern Recogn. 47(1), 326–343 (2014). https://doi.org/10.1016/j.patcog.2013.04.020
Article ADS MATH Google Scholar
Hartley, R., Zisserman, A.: Multiple View Geometry in Computer Vision, 2nd edn. Cambridge University Press, Cambridge (2004)
Ying, X.H., Zha, H.B.: Geometric interpretations of the relation between the image of the absolute conic and sphere images. IEEE Trans. Pattern Anal. Mach. Intell. 28(12), 2031–2036 (2006). https://doi.org/10.1109/TPAMI.2006.245
Zhao, Z.J.: Conics with a common axis of symmetry: Properties and applications to camera calibration. Proc. Twenty-Second Joint. Conf. Artif. Intell. 3(7), 2079–2084 (2011). https://doi.org/10.5591/978-1-57735-516-8/IJCAI11-347
Gong, Z., Liu, Z., Zhang, G.: Flexible global calibration of multiple cameras with nonoverlapping fields of view using circular targets. Appl. Opt. 56(11), 3122–3131 (2017). https://doi.org/10.1364/AO.56.003122
Article ADS MATH Google Scholar
Semple, J.G., Kneebone, G.T.: Algebraic Projective Geometry. Clarendon Press, Oxford (1999)
Yang, F., Zhao, Y., Wang, X.: Two separate circles with same-radius: Projective geometric properties and applicability in camera calibration. IEEE Access. 8(2), 16795–16806 (2020). https://doi.org/10.1109/ACCESS.2020.2963884
Canny, J.: A computational approach to edge detection. IEEE Trans. Pattern Anal. Mach. Intell. 8(6), 678–698 (1986). https://doi.org/10.1109/TPAMI.1986.4767851
Fitzgibbon, A., Pilu, M., Fisher, R.B.: Direct least square fitting of ellipses. IEEE Trans. Pattern Anal. Mach. Intell. 21(5), 476–480 (1999). https://doi.org/10.1109/34.765658
Comments (0)