Qian, J., Feng, S., Xu, M., Tao, T., Shang, Y., Chen, Q., Zuo, C.: High-resolution real-time 360° 3D surface defect inspection with fringe projection profilometry. Opt. Lasers Eng. (2021). https://doi.org/10.1016/j.optlaseng.2020.106382
Sansoni, G., Trebeschi, M., Docchio, F.: State-of-the-art and applications of 3D imaging sensors in industry, cultural heritage, medicine, and criminal investigation. Sensors. 9, 568–601 (2009). https://doi.org/10.3390/s90100568
Article ADS MATH Google Scholar
Wen, X., Wang, J., Zhang, G., Niu, L.: Three-dimensional morphology and size measurement of high-temperature metal components based on machine vision technology: a review. Sensors. (2021). https://doi.org/10.3390/s21144680
Shi, T., Qi, Y., Zhu, C., Tang, Y., Wu, B.: Three-dimensional microscopic image reconstruction based on structured light illumination. Sensors. (2021). https://doi.org/10.3390/s21186097
Xu, J., Zhang, S.: Status, challenges, and future perspectives of fringe projection profilometry. Opt. Lasers Eng. (2020). https://doi.org/10.1016/j.optlaseng.2020.106193
Cheng, X., Liu, X., Li, Z., Zhong, K., Han, L., He, W., Gan, W., Xi, G., Wang, C., Shi, Y.: High-accuracy globally consistent surface reconstruction using fringe projection profilometry. Sensors. 19, 668 (2019). https://doi.org/10.3390/s19030668
Zuo, C., Huang, L., Zhang, M., Chen, Q., Asundi, A.: Temporal phase unwrapping algorithms for fringe projection profilometry: a comparative review. Opt. Lasers Eng. 85, 84–103 (2016). https://doi.org/10.1016/j.optlaseng.2016.04.022
Tao, T., Chen, Q., Feng, S., Qian, J., Hu, Y., Huang, L., Zuo, C.: High-speed real-time 3D shape measurement based on adaptive depth constraint. Opt. Express 26, 22440–22456 (2018). https://doi.org/10.1364/OE.26.022440
Rao, G., Yang, X., Yu, H., Chen, K., Xu, J.: Fringe-projection-based normal direction measurement and adjustment for robotic drilling. IEEE Trans. Ind. Electron. 67, 9560–9570 (2020). https://doi.org/10.1109/TIE.2019.2952791
Gorthi, S.S., Rastogi, P.: Fringe projection techniques: whither we are? Opt. Lasers Eng. 48, 133–140 (2010). https://doi.org/10.1016/j.optlaseng.2009.09.001
Takeda, M., Ina, H., Kobayashi, S.: Fourier-transform method of fringe-pattern analysis for computer-based topography and interferometry. J. Opt. Soc. Am. 72, 156–160 (1982). https://doi.org/10.1364/JOSA.72.000156
Article ADS MATH Google Scholar
Zuo, C., Feng, S., Huang, L., Tao, T., Yin, W., Chen, Q.: Phase shifting algorithms for fringe projection profilometry: a review. Opt. Lasers Eng. 109, 23–59 (2018). https://doi.org/10.1016/j.optlaseng.2018.04.019
Wust, C., Capson, D.W.: Surface profile measurement using color fringe projection. Mach. Vis. Appl. 4, 193–203 (1991). https://doi.org/10.1007/BF01230201
Zhang, B., Lin, S., Lin, J., Jiang, K.: Single-shot high-precision 3D reconstruction with color fringe projection profilometry based BP neural network. Opt. Commun. (2022). https://doi.org/10.1016/j.optcom.2022.128323
Zhang, Z.H., Towers, C.E., Towers, D.P.: Compensating lateral chromatic aberration of a colour fringe projection system for shape metrology. Opt. Lasers Eng. 48, 159–165 (2010). https://doi.org/10.1016/j.optlaseng.2009.04.010
Kuo, C.-F.J., Chang, A., Kuo, P.-C.J., Lee, C.-L., Wu, H.-C.: Applying innovative stripes adaptive detection to three-dimensional measurement of color fringe profilometry. Opt. Commun. 381, 116–126 (2016). https://doi.org/10.1016/j.optcom.2016.06.069
Article ADS MATH Google Scholar
Zhang, Z., Towers, C.E., Towers, D.P.: Time efficient color fringe projection system for 3D shape and color using optimum 3-frequency Selection. Opt. Express 14, 6444–6455 (2006). https://doi.org/10.1364/OE.14.006444
Article ADS MATH Google Scholar
Wang, J., Yang, Y., Zhou, Y.: 3-D shape reconstruction of non-uniform reflectance surface based on pixel intensity, pixel color and camera exposure time adaptive adjustment. Sci. Rep. (2021). https://doi.org/10.1038/s41598-021-83779-9
Yu, H., Zheng, D., Fu, J., Zhang, Y., Zuo, C., Han, J.: Deep learning-based fringe modulation-enhancing method for accurate fringe projection profilometry. Opt. Express 28, 21692–21703 (2020). https://doi.org/10.1364/OE.398492
Feng, S., Zuo, C., Zhang, L., Yin, W., Chen, Q.: Generalized framework for non-sinusoidal fringe analysis using deep learning. Photonics Res. 9, 1084–1098 (2021). https://doi.org/10.1364/PRJ.420944
Qian, J., Feng, S., Li, Y., Tao, T., Han, J., Chen, Q., Zuo, C.: Single-shot absolute 3D shape measurement with deep-learning-based color fringe projection profilometry. Opt. Lett. 45, 1842–1845 (2020). https://doi.org/10.1364/OL.388994
Ghassemi, N., Shoeibi, A., Rouhani, M.: Deep neural network with generative adversarial networks pre-training for brain tumor classification based on MR images. Biomed. Signal Process. Control 57, 101678 (2020). https://doi.org/10.1016/j.bspc.2019.101678
Zheng, Y., Wang, S., Li, Q., Li, B.: Fringe projection profilometry by conducting deep learning from its digital twin. Opt. Express 28, 36568–36583 (2020). https://doi.org/10.1364/OE.410428
Article ADS MATH Google Scholar
Wang, F., Wang, C., Guan, Q.: Single-shot fringe projection profilometry based on deep learning and computer graphics. Opt. Express 29, 8024–8040 (2021). https://doi.org/10.1364/OE.418430
Article ADS MATH Google Scholar
Ueda, K., Ikeda, K., Koyama, O., Yamada, M.: Absolute phase retrieval of shiny objects using fringe projection and deep learning with computer-graphics-based images. Appl. Opt. 61, 2750–2756 (2022). https://doi.org/10.1364/AO.450723
Article ADS MATH Google Scholar
Jia, P., Wang, W., Ning, R., Xue, X.: Digital twin of atmospheric turbulence phase screens based on deep neural networks. Opt. Express 30, 21362–21376 (2022). https://doi.org/10.1364/OE.460244
Article ADS MATH Google Scholar
van der Walt, S., Schönberger, J.L., Nunez-Iglesias, J., Boulogne, F., Warner, J.D., Yager, N., Gouillart, E., Yu, T.: The scikit-image contributors: scikit-image: image processing in Python. PeerJ (2014). https://doi.org/10.7717/peerj.453
Zhang, Z., Liu, Q., Wang, Y.: Road extraction by deep residual U-Net. IEEE Geosci. Remote Sens. Lett. 15, 749–753 (2018). https://doi.org/10.1109/LGRS.2018.2802944
Article ADS MATH Google Scholar
Ronneberger, O., Fischer, P., Brox, T.: U-Net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., and Frangi, A.F. (eds.) Medical image computing and computer-assisted intervention – MICCAI 2015. Lecture notes in computer science 9351, pp. 234–241. Springer International Publishing, Cham (2015)
Ueda, K., Ikeda, K., Koyama, O., Yamada, M.: Fringe projection profilometry system verification for 3D shape measurement using virtual space of game engine. Opt. Rev. 28, 723–729 (2021). https://doi.org/10.1007/s10043-021-00704-1
Zhou, Q., Jacobson, A.: Thingi10K: a dataset of 10,000 3D-printing models. ArXiv (2016). https://doi.org/10.48550/arXiv.1605.04797
Zhang, H., Vallabh, C.K.P., Xiong, Y., Zhao, X.: A systematic study and framework of fringe projection profilometry with improved measurement performance for in-situ LPBF process monitoring. Measurement (2022). https://doi.org/10.1016/j.measurement.2022.110796
Comments (0)