Inhomogeneous birefringence analysis using a tensor-valued backprojection

Aben, H.K., Josepson, J.I., Kell, K.-J.E.: The case of weak birefringence in integrated photoelasticity. Opt Lasers Eng 11(3), 145–157 (1989)

Article  MATH  Google Scholar 

Andrienko, Yu.A., Dubovikov, M.S.: Optical tomography of tensor fields: the general case. JOSA A 11(5), 1628–1631 (1994)

Article  ADS  MATH  Google Scholar 

Aben, H.: Puro, Alfred: Photoelastic tomography for three-dimensional flow birefringence studies. Inverse Problems 13(2), 215 (1997)

Article  ADS  MathSciNet  MATH  Google Scholar 

Autodesk, Inc. Autodesk Moldflow

Wang, C.J., Wang, P.J.: Analysis of optical properties in injection-molded and compression-molded optical lenses. Appl. opt. 53(11), 2523–2531 (2014)

Article  ADS  MATH  Google Scholar 

Photonic Lattice, Inc. WPA-200 Series

Dietrich Schupp: Determination of 3D stress by optical sensor field tomography. In Optical Inspection and Micromeasurements II, volume 3098, pages 431–441. SPIE (1997)

Dietrich Schupp: Determination of the 3D stress tensor in photoelastic materials by optical tensor field tomography. In: Optical Diagnostics for Fluids/Heat/Combustion and Photomechanics for Solids, volume 3783, pp. 56–67. SPIE (1999)

Aben, Hillar: Errapart, Andrei, Ainola, Leo, Anton, Johan: Photoelastic tomography for residual stress measurement in glass. Opt. Eng. 44(9), 093601–093601 (2005)

Article  ADS  MATH  Google Scholar 

Hammer, H., Lionheart, William RB.: Reconstruction of spatially inhomogeneous dielectric tensors through optical tomography. JOSA A 22(2), 250–255 (2005)

Article  ADS  MathSciNet  MATH  Google Scholar 

Lionheart, W., Sharafutdinov, V.: Reconstruction algorithm for the linearized polarization tomography problem with incomplete data. Contempdorary Math. 14, 137 (2009)

Article  MathSciNet  MATH  Google Scholar 

Dave, A., Zhang, T., Young, A., Raskar, R., Heidrich, W., Veeraraghavan, A.: NeST: Neural stress tensor tomography by leveraging 3D photoelasticity. arXiv preprint arXiv:2406.10212 (2024)

Yokoyama, Y., Ichihara, S., Tagawa, Y.: High-speed photoelastic tomography for axisymmetric stress fields in a soft material: temporal evolution of all stress components. Opt Lasers Eng 178, 108224 (2024)

Article  MATH  Google Scholar 

Seigo, M., Fukui, H., Kawano, S., Kupinski, M.: Developing a reconstruction algorithm for 3d birefringence from tomographic polarimetry. In Polarization Science and Remote Sensing XI, volume 12690, pp. 117–127. SPIE (2023)

Sharafutdinov, Vladimir Altafovich: Integral geometry of tensor fields, vol. 1. Walter de Gruyter (2012)

MATH  Google Scholar 

Irgens, F.: Irgens, and Baumann. Springer, Tensor analysis (2019)

MATH  Google Scholar 

Noumeir, R.: Detecting three-dimensional rotation of an ellipsoid from its orthographic projections. Pattern Recognit. Lett. 20(6), 585–590 (1999)

Article  ADS  MATH  Google Scholar 

Karl, W.C., Verghese, G.C., Willsky, A.S.: Reconstructing ellipsoids from projections. CVGIP 56(2), 124–139 (1994)

Google Scholar 

Zhu, J., Lee, S.W., Ye, Y., Zhao, S., Wang, G.: X-ray transform and 3D radon transform for ellipsoids and tetrahedra. J. X-Ray Sci. Technol. 12(4), 215–229 (2004)

MATH  Google Scholar 

Chipman, Russell, Lam, Wai Sze Tiffany., Young, Garam: Polarized light and optical systems. CRC Press (2018)

Book  MATH  Google Scholar 

Barrett, Harrison H., Myers, Kyle J.: Foundations of image science. John Wiley & Sons (2013)

MATH  Google Scholar 

Defrise, Michel, Gullberg, Grant T.: 3D reconstruction of tensors and vectors. Lawrence Berkeley National Laboratory (2005)

Book  MATH  Google Scholar 

Winters, Kraig B.: Rouseff, Daniel: a filtered backprojection method for the tomographic reconstruction of fluid vorticity. Inverse Prob. 6(4), L33 (1990)

Article  MathSciNet  MATH  Google Scholar 

Gullberg, G.T., Defrise, M., Panin, V.Y., Zeng, G.L.: Backprojection filtering algorithms for reconstruction of vector and second order tensor fields. In: 2000 IEEE Nuclear Science Symposium. Conference Record (Cat. No. 00CH37149), volume 2, pp. 15–277. IEEE (2000)

Braun, Hans: Hauck, Axel: Tomographic reconstruction of vector fields. IEEE Trans. Signal Process. 39(2), 464–471 (1991)

Article  ADS  MATH  Google Scholar 

Comments (0)

No login
gif