Han, J., Zhu, J., Cui, Y., et al.: Action detection by double hierarchical multi-structure space–time statistical matching model. Opt. Rev. 25, 301–315 (2018)
Hong, K.: Facial expression recognition based on anomaly feature. Opt. Rev. 29, 178–187 (2022)
Liu, F., Huang, Z., Gu, T., et al.: An efficient evaluation model of fusion splice with different transverse offset and angular misalignment for few mode fiber. Opt Rev. 32(1), 1–13 (2024)
Liu, H., Wu, Y., Sun, F.: Extreme trust region policy optimization for active object recognition. IEEE Trans Neural Netw Learn Syst 29(6), 2253–2258 (2018)
MathSciNet MATH Google Scholar
Zhang, X.Y., Li, C., Shi, X., et al.: AdapNet: adaptability decomposing encoder–decoder network for weakly supervised action recognition and localization. IEEE Trans Neural Netw Learn Syst 34(4), 1852–1863 (2023)
Li, M.S., Chen, S.H., Chen, X., et al.: Symbiotic graph neural networks for 3D skeleton-based human action recognition and motion prediction. IEEE Trans. Pattern Anal. Mach. Intell. 44(6), 3316–3333 (2022)
Fang, T.Y., An, J.S., Chen, Q., et al.: Progress and comparison in nondestructive detection, imaging and recognition technology for defects of wafers, chips and solder joints. Nondestruct Testing Eval. 39(6), 1599–1654 (2023)
Yi, Q., Tian, G., Malekmohammadi, H., et al.: New features for delamination depth evaluation in carbon fiber reinforced plastic materials using eddy current pulse-compression thermography. Ndt E Int. 102, 264–273 (2019)
ElSheikh, A., Abu-Nabah, B.A., Hamdan, M.O., et al.: Infrared camera geometric calibration: a review and a precise thermal radiation checkerboard target. Sensors 23(7), 3479 (2023)
Zhu, Y., Guo, G.: A study on visible to infrared action recognition. IEEE Signal Process. Lett. 20(9), 897–900 (2013)
Hilsenbeck, B., Münch, D., Grosselfinger, A.K. et al. Action recognition in the longwave infrared and the visible spectrum using hough forests. 2016 IEEE International Symposium on Multimedia (ISM) San Jose, CA, USA. pp 329–332 (2013).
Tan, Y., Yan, W., Huang, S., et al.: A motion deviation image-based phase feature for recognition of thermal infrared human activities. Eng. Lett. 28, 48–55 (2020)
Gao, C., Hauptmann, G., Meng, D.: InfAR dataset: infrared action recognition at different times. Neurocomputing 212, 36–47 (2016)
Liu, Y., Lu, Z., Li, J.: Global temporal representation based CNNs for infrared action recognition. Eng. Lett. 25(6), 848–852 (2018)
Jiang, Z., Wang, Y., Davis, L. et al. Learning discriminative features via label consistent neural network. 2017 IEEE Winter Conference on Applications of Computer Vision (WACV), Santa Rosa, CA, USA, 207–216 (2017).
Imran, J., Raman, B.: Deep residual infrared action recognition by integrating local and global spatio-temporal cues. Infrared Phys. Technol. 102, 103014 (2019)
Yan, A., Wang, Y., Li, Z. et al. PA3D: Pose-action 3D machine for video recognition. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 7922–7931 (2019).
Lee, E.J., Ko, B.C., Nam, J.Y.: Recognizing pedestrian’s unsafe behaviors in far-infrared imagery at night. Infrared Phys. Technol. 76, 261–270 (2016)
Akula, A., Shah, A.: Deep learning approach for human action recognition in infrared images. Cogn. Syst. Res. 50, 146–154 (2018)
Gochoo, M., Tan, T.H., Huang, S.C.: Novel IoT-based privacy-preserving yoga posture recognition system using low-resolution infrared sensors and deep learning. IEEE Internet Things J. 6, 7192–7200 (2019)
Wang, D., Lai, R., Guan, J.T.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13, 600–612 (2004)
Wang, Z., Simoncelli, E.P., Bovik, A.C. Multiscale structural similarity for image quality assessment. Systems & Computers CA, USA. pp 1398–1402 (2003).
Zhang, L., Zhang, L., Mou, X.: FSIM: a feature similarity index for image quality assessment. IEEE Trans. Image Process. 20, 2378–2386 (2011)
ADS MathSciNet MATH Google Scholar
Mantiuk, R., Kim, K.J., Rempel, A.G.: FSIM: HDR-VDP-2: A calibrated visual metric for visibility and quality predictions in all luminance conditions. ACM Trans Graphics (TOG) 30, 1–14 (2011)
Zhang, R., Isola, P., Efros, A.A. The unreasonable effectiveness of deep features as a perceptual metric. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, USA. pp 586–595 (2018).
Yang, S., Jiang, L., Liu, Z. Pastiche Master: exemplar-based high-resolution portrait style transfer. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, USA. pp 7693–7702 (2022).
Deng, Y., Tang, F., Dong, W. et al. StyTr2: Image style transfer with transformers. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, USA. pp 11326–11336 (2022).
Luo, Z., Huang, H., Yu, L. et al. Deep constrained least squares for blind image super-resolution. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, USA. pp 17642–17652 (2022).
Zamir, S.W., Arora, A., Khan, S. et al. Restormer: efficient transformer for high-resolution image restoration. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, USA. pp 5728–5739 (2022).
Johnson, J., Alahi, A. Perceptual losses for real-time style transfer and super-resolution. European conference on computer vision, Amsterdam, Netherlands. pp 694–711 (2016).
Hadsell, R., Chopra, S. Dimensionality reduction by learning an invariant mapping. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, IEEE, New York, USA. pp 1735–1742 (2006).
Hou, Q., Zhou, D., Feng, J. Coordinate attention for efficient mobile network design. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp 13713–13722 (2021).
Fu, Y., Zhang, L., Wang, J. et al. Depth guided adaptive meta-fusion network for few-shot video recognition. Proceedings of the 28th ACM International Conference on Multimedia, New York, USA. pp 1142–1151 (2020).
Zhou, X.H., Yu, L., He, X., et al.: Research on human behavior recognition method in infrared image based on improved resnet-18. Laser & Infrared 51, 1178–1184 (2021)
Zhang, M.M., Choi, J., Daniilidis, K. et al. VAIS: A dataset for recognizing maritime imagery in the visible and infrared spectrums. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Boston, USA. pp 10–16 (2015).
Wu, T.M., Cao, Z., Gao, Z., et al.: STMixer: a one-stage sparse action detector. IEEE Trans. Pattern Anal. Mach. Intell. 46(10), 6842–6857 (2024)
Feng, Z.Q., Wang, X.G., Zhou, J.Y., et al.: MDJ: a multi-scale difference joint keyframe extraction algorithm for infrared surveillance video action recognition. Digital Signal Process 148, 104469 (2024)
Hong, Q., Sun, H., Li, B. et al. MpVit-Unet: Multi-path vision transformer unet for sellar region lesions segmentation. 2023 5th International Conference on Intelligent Medicine and Image Processing (IMIP), Tianjin, China. pp 51–58 (2023).
Quan, Z.Z., Chen, Q.S., Li, Y.J., et al.: ARCTIC: a knowledge distillation approach via attention-based relation matching and activation region constraint for RGB-to-Infrared videos action recognition. Comput. Vis. Image Underst. 237, 103853 (2023)
Wang, B.S., Wang, C.Y., Chiu, W.C. MCPNet: An interpretable classifier via multi-level concept prototypes. 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA. pp 10885–10894 (2024).
Woo, S., Park, J., Lee, J.Y. et al. CBAM: Convolutional block attention module. Proceedings of the European Conference on Computer Vision. pp 3–19 (2018).
Zhang, H., Wu, C.J., Zhang, Z.Y. et al. ResNeSt: Split-attention networks. 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. pp 2735–2745 (2022).
Quan, Y., Zhang, D., Zhang, L.Y., et al.: Centralized feature pyramid for object detection. IEEE Trans. Image Process. 32, 4341–4354 (2023)
Zhu, L., Wang, X.J., Ke, Z.H. et al. BiFormer: Vision transformer with bi-level routing attention. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp 10323–10333 (2023).
Comments (0)