Pericoronary adipose tissue: potential for pathological diagnosis and therapeutic applications

Akoumianakis I, Tarun A, Antoniades C. Perivascular adipose tissue as a regulator of vascular disease pathogenesis: identifying novel therapeutic targets. Br J Pharmacol. 2017;174:3411–24. https://doi.org/10.1111/bph.13666.

Article  CAS  PubMed  Google Scholar 

Tanaka K, Fukuda D, Sata M. Roles of epicardial adipose tissue in the pathogenesis of coronary atherosclerosis—an update on recent findings. Circ J. 2020;85:2–8. https://doi.org/10.1253/circj.CJ-20-0935.

Article  PubMed  Google Scholar 

Wang M, Pan W, Xu Y, Zhang J, Wan J, Jiang H. Microglia-mediated neuroinflammation: a potential target for the treatment of cardiovascular diseases. J Inflamm Res. 2022;15:3083–94. https://doi.org/10.2147/jir.S350109.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Matsuzawa Y, Funahashi T, Kihara S, Shimomura I. Adiponectin and metabolic syndrome. Arterioscler Thromb Vasc Biol. 2004;24:29–33. https://doi.org/10.1161/01.Atv.0000099786.99623.Ef.

Article  CAS  PubMed  Google Scholar 

Antoniades C, Tousoulis D, Vavlukis M, Fleming I, Duncker DJ, Eringa E, et al. Perivascular adipose tissue as a source of therapeutic targets and clinical biomarkers. Eur Heart J. 2023;44:3827–44. https://doi.org/10.1093/eurheartj/ehad484.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Antonopoulos AS, Antoniades C. The role of epicardial adipose tissue in cardiac biology: classic concepts and emerging roles. J Physiol. 2017;595:3907–17. https://doi.org/10.1113/jp273049.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kitagawa T, Sentani K, Ikegami Y, Takasaki T, Takahashi S, Nakano Y. Relationship between clinical parameters and histological features of epicardial adipose tissue and aortic valve calcification assessed on computed tomography. Circ J. 2024;88:1986–95. https://doi.org/10.1253/circj.CJ-24-0226.

Article  PubMed  Google Scholar 

Kuo L, Wang GJ, Chang SL, Lin YJ, Chung FP, Lo LW, et al. Feasibility of auto-quantified epicardial adipose tissue in predicting atrial fibrillation recurrence after catheter ablation. Circ J. 2024;88:1089–98. https://doi.org/10.1253/circj.CJ-23-0808.

Article  PubMed  Google Scholar 

Wang Z, Li J, Chen J, Guo H, He H, Jiao S, et al. Relationship between epicardial adipose tissue volume and recurrence after ablation in premature ventricular complexes. Circ J. 2024;88:1047–54. https://doi.org/10.1253/circj.CJ-23-0474.

Article  PubMed  Google Scholar 

Sakai J, Takami M, Fukuzawa K, Kiuchi K, Nakamura T, Yatomi A, et al. Sex Differences in the regional analysis of nonpulmonary vein foci and epicardial adipose tissue in patients with atrial fibrillation. Circ J. 2022;87:29–40. https://doi.org/10.1253/circj.CJ-22-0196.

Article  PubMed  Google Scholar 

Nakahara S, Hori Y, Fukuda R, Sato H, Aoki H, Ishikawa T, et al. Chronic effect of hotballoon-based wide planar ablation on epicardial adipose tissue in persistent atrial fibrillation. Circ Rep. 2023;5:371–80. https://doi.org/10.1253/circrep.CR-23-0073.

Article  PubMed  PubMed Central  Google Scholar 

Antoniades C, Antonopoulos AS, Deanfield J. Imaging residual inflammatory cardiovascular risk. Eur Heart J. 2020;41:748–58. https://doi.org/10.1093/eurheartj/ehz474.

Article  CAS  PubMed  Google Scholar 

Turaihi AH, Serné EH, Molthoff CFM, Koning JJ, Knol J, Niessen HW, et al. Perivascular adipose tissue controls insulin-stimulated perfusion, mitochondrial protein expression, and glucose uptake in muscle through adipomuscular arterioles. Diabetes. 2020;69:603–13. https://doi.org/10.2337/db18-1066.

Article  CAS  PubMed  Google Scholar 

Costa RM, Neves KB, Tostes RC, Lobato NS. Perivascular adipose tissue as a relevant fat depot for cardiovascular risk in obesity. Front Physiol. 2018;9:253. https://doi.org/10.3389/fphys.2018.00253.

Article  PubMed  PubMed Central  Google Scholar 

Antonopoulos AS, Sanna F, Sabharwal N, Thomas S, Oikonomou EK, Herdman L, et al. Detecting human coronary inflammation by imaging perivascular fat. Sci Transl Med. 2017. https://doi.org/10.1126/scitranslmed.aal2658.

Article  PubMed  Google Scholar 

Mikami T, Furuhashi M, Numaguchi R, Hosaka I, Sakai A, Tanaka M, et al. Comparison of phenotypes in subcutaneous fat and perivascular adipose tissue surrounding the saphenous vein in coronary artery bypass grafting. Circ J. 2023;87:791–8. https://doi.org/10.1253/circj.CJ-22-0740.

Article  CAS  PubMed  Google Scholar 

Szasz T, Bomfim GF, Webb RC. The influence of perivascular adipose tissue on vascular homeostasis. Vasc Health Risk Manag. 2013;9:105–16. https://doi.org/10.2147/vhrm.S33760.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Marketou M, Kontaraki J, Kalogerakos P, Plevritaki A, Chlouverakis G, Kassotakis S, et al. Differences in microRNA expression in pericoronary adipose tissue in coronary artery disease compared to severe valve dysfunction. Angiology. 2023;74:22–30. https://doi.org/10.1177/00033197221121617.

Article  CAS  PubMed  Google Scholar 

Vacca M, Di Eusanio M, Cariello M, Graziano G, D’Amore S, Petridis FD, et al. Integrative miRNA and whole-genome analyses of epicardial adipose tissue in patients with coronary atherosclerosis. Cardiovasc Res. 2016;109:228–39. https://doi.org/10.1093/cvr/cvv266.

Article  CAS  PubMed  Google Scholar 

Liu Y, Sun Y, Lin X, Zhang D, Hu C, Liu J, et al. Perivascular adipose-derived exosomes reduce macrophage foam cell formation through miR-382-5p and the BMP4-PPARγ-ABCA1/ABCG1 pathways. Vascul Pharmacol. 2022;143: 106968. https://doi.org/10.1016/j.vph.2022.106968.

Article  CAS  PubMed  Google Scholar 

Kim HW, Shi H, Winkler MA, Lee R, Weintraub NL. Perivascular adipose tissue and vascular perturbation/atherosclerosis. Arterioscler Thromb Vasc Biol. 2020;40:2569–76. https://doi.org/10.1161/atvbaha.120.312470.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ichikawa K, Miyoshi T, Ohno Y, Osawa K, Nakashima M, Nishihara T, et al. Association between high pericoronary adipose tissue computed tomography attenuation and impaired flow-mediated dilation of the brachial artery. J Atheroscler Thromb. 2023;30:364–76. https://doi.org/10.5551/jat.63580.

Article  CAS  PubMed  Google Scholar 

Chen C, Jiang J, Lü JM, Chai H, Wang X, Lin PH, et al. Resistin decreases expression of endothelial nitric oxide synthase through oxidative stress in human coronary artery endothelial cells. Am J Physiol Heart Circ Physiol. 2010;299:H193-201. https://doi.org/10.1152/ajpheart.00431.2009.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Oikonomou EK, Antoniades C. The role of adipose tissue in cardiovascular health and disease. Nat Rev Cardiol. 2019;16:83–99. https://doi.org/10.1038/s41569-018-0097-6.

Article  PubMed  Google Scholar 

Moreno PR, Purushothaman KR, Fuster V, Echeverri D, Truszczynska H, Sharma SK, et al. Plaque neovascularization is increased in ruptured atherosclerotic lesions of human aorta: implications for plaque vulnerability. Circulation. 2004;110:2032–8. https://doi.org/10.1161/01.Cir.0000143233.87854.23.

Article  PubMed  Google Scholar 

Phillippi JA. On vasa vasorum: a history of advances in understanding the vessels of vessels. Sci Adv. 2022;8:eabl6364. https://doi.org/10.1126/sciadv.abl6364.

Article  PubMed  PubMed Central  Google Scholar 

Sluimer JC, Kolodgie FD, Bijnens AP, Maxfield K, Pacheco E, Kutys B, et al. Thin-walled microvessels in human coronary atherosclerotic plaques show incomplete endothelial junctions relevance of compromised structural integrity for intraplaque microvascular leakage. J Am Coll Cardiol. 2009;53:1517–27. https://doi.org/10.1016/j.jacc.2008.12.056.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sacks HS, Fain JN. Human epicardial adipose tissue: a review. Am Heart J

Comments (0)

No login
gif