Artificial Intelligence Methods for Diagnostic and Decision-Making Assistance in Chronic Wounds: A Systematic Review

Elisabet Alguacil Ruiz, Justo Rueda López, J.M.S.V.: Actualización en la validez de las escalas de evaluación de la evolución de heridas. Heridas y Cicatrización 11, 15–21 (2021)

Wilkinson, H.N., Hardman, M.J.: Wound healing: cellular mechanisms and pathological outcomes. Open Biology (2020)

[Internet], I.o.: Overview: Chronic wounds. Institute for Quality and Efficiency in Health Care (IQWiG). https://www.ncbi.nlm.nih.gov/books/NBK326431/ Accessed 2024-12-10

Mongkornwong, A., Wongwiwat, W., Chansanti, O., Sukprasert, P., Akaranuchat, N.: Hard-to-Heal Wounds. PSU Medical Journal, 1–12 (2024) https://doi.org/10.31584/psumj.2024265285

Marijanović, D., Filko, D.: A systematic overview of recent methods for non-contact chronic wound analysis. Applied Sciences (Switzerland) 10(21), 1–28 (2020) https://doi.org/10.3390/app10217613

Article  CAS  Google Scholar 

Agale, S.V.: Chronic Leg Ulcers : Epidemiology, Aetiopathogenesis, and Management. Ulcers 2013 (2013)

Leaper, D.J., Durani, P.: Topical antimicrobial therapy of chronic wounds healing by secondary intention using iodine products. International Wound Journal 5(2), 361–368 (2008) https://doi.org/10.1111/j.1742-481X.2007.00406.x

Article  PubMed  PubMed Central  Google Scholar 

Lindholm, C., Searle, R.: Wound management for the 21st century: combining effectiveness and efficiency. International Wound Journal 13, 5–15 (2016) https://doi.org/10.1111/iwj.12623

Article  PubMed  PubMed Central  Google Scholar 

Mohammed, H.T., Bartlett, R.L., Babb, D., Fraser, R.D.J., Mannion, D.: A time motion study of manual versus artificial intelligence methods for wound assessment. PLoS ONE 17, 1–14 (2022) https://doi.org/10.1371/journal.pone.0271742

Article  CAS  Google Scholar 

Zhu, X., Olsson, M.M., Bajpai, R., Järbrink, K., Tang, W.E., Car, J.: Health-related quality of life and chronic wound characteristics among patients with chronic wounds treated in primary care: A cross-sectional study in Singapore. International Wound Journal 19(5), 1121–1132 (2022) https://doi.org/10.1111/iwj.13708

Article  PubMed  Google Scholar 

Yazdanpanah, L., Shahbazian, H., Nazari, I., Arti, H.R., Ahmadi, F., Mohammadianinejad, S.E., Cheraghian, B., Hesam, S.: Incidence and risk factors of diabetic foot ulcer: A population-based diabetic foot cohort (ADFC study)-two-year follow-up study. International Journal of Endocrinology 2018 (2018) https://doi.org/10.1155/2018/7631659

Järbrink, K., Ni, G., Sönnergren, H., Schmidtchen, A., Pang, C., Bajpai, R., Car, J.: The humanistic and economic burden of chronic wounds: A protocol for a systematic review. Systematic Reviews 6(1), 1–7 (2017) https://doi.org/10.1186/s13643-016-0400-8

Article  Google Scholar 

Andersen, C.A., McLeod, K., Steffan, R.: Diagnosis and treatment of the invasive extension of bacteria (cellulitis) from chronic wounds utilising point-of-care fluorescence imaging. International Wound Journal 19(5), 996–1008 (2022) https://doi.org/10.1111/iwj.13696

Article  PubMed  Google Scholar 

Schäfer, Z., Mathisen, A., Svendsen, K., Engberg, S., Thomsen, T.R., Kirketerp-Møller, K.: Toward machine-learning-based decision support in diabetes care: A risk stratification study on diabetic foot ulcer and amputation. Frontiers in Medicine 7, 1–13 (2021) https://doi.org/10.3389/fmed.2020.601602

Article  Google Scholar 

Ros, R.D., Assaloni, R., Michelli, A., Brunato, B., Barro, E., Meloni, M., Miranda, C.: Burden of infected diabetic foot ulcers on hospital admissions and costs in a third-level center. Diabetology 5, 141–150 (2024) https://doi.org/10.3390/diabetology5020011

Article  Google Scholar 

Gupta, R., Goldstone, L., Eisen, S., Ramachandram, D., Cassata, A., Fraser, R.D.J., Ramirez-Garcialuna, J.L., Bartlett, R., Allport, J.: Towards an ai-based objective prognostic model for quantifying wound healing. IEEE Journal of Biomedical and Health Informatics 28, 666–677 (2024) https://doi.org/10.1109/JBHI.2023.3251901

Article  PubMed  Google Scholar 

Ramawat, Y., Nitesh, K., Kumar, V., Pareek, S.: The Role of Artificial Intelligence in Chronic Wound Assessment and Management. The Wocsi Journal of Medical Science 1(1) (2023)

Chakraborty, C.: Performance Analysis of Compression Techniques for Chronic Wound Image Transmission Under Smartphone-Enabled Tele-Wound Network. Research Anthology on Telemedicine Efficacy, Adoption, and Impact on Healthcare Delivery, 345–364 (2021) https://doi.org/10.4018/978-1-7998-8052-3.ch018

Page, M.J., McKenzie, J.E., Bossuyt, P.M., Boutron, I., Hoffmann, T.C., Mulrow, C.D., Shamseer, L., Tetzlaff, J.M., Akl, E.A., Brennan, S.E., Chou, R., Glanville, J., Grimshaw, J.M., Hróbjartsson, A., Lalu, M.M., Li, T., Loder, E.W., Mayo-Wilson, E., McDonald, S., McGuinness, L.A., Stewart, L.A., Thomas, J., Tricco, A.C., Welch, V.A., Whiting, P., Moher, D.: The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ Publishing Group (2021). https://doi.org/10.1136/bmj.n71

Article  Google Scholar 

Page, M.J., Moher, D., Bossuyt, P.M., Boutron, I., Hoffmann, T.C., Mulrow, C.D., Shamseer, L., Tetzlaff, J.M., Akl, E.A., Brennan, S.E., Chou, R., Glanville, J., Grimshaw, J.M., Hróbjartsson, A., Lalu, M.M., Li, T., Loder, E.W., Mayo-Wilson, E., Mcdonald, S., Mcguinness, L.A., Stewart, L.A., Thomas, J., Tricco, A.C., Welch, V.A., Whiting, P., Mckenzie, J.E.: PRISMA 2020 explanation and elaboration: Updated guidance and exemplars for reporting systematic reviews. BMJ Publishing Group (2021). https://doi.org/10.1136/bmj.n160

Article  Google Scholar 

Whiting, P.F., Rutjes, A.W.S., Westwood, M.E., Mallett, S., Deeks, J.J., Reitsma, J.B., Leeflang, M.M.G., Sterne, J.A.C., Bossuyt, P.M.M.: Quadas-2: A revised tool for the quality assessment of diagnostic accuracy studies. Annals of Internal Medicine 155(8), 529–536 (2011) https://doi.org/10.7326/0003-4819-155-8-201110180-00009/SUPPL_FILE/155-8-529-SUPPLEMENT.PDF

Article  PubMed  Google Scholar 

Jayakumar, S., Sounderajah, V., Normahani, P., Harling, L., Markar, S.R., Ashrafian, H., Darzi, A.: Quality assessment standards in artificial intelligence diagnostic accuracy systematic reviews: a meta-research study. npj Digital Medicine 5(1), 1–13 (2022) https://doi.org/10.1038/s41746-021-00544-y

Mishra, A.: Metrics to Evaluate your Machine Learning Algorithm | by Aditya Mishra — Towards Data Science (2018). https://towardsdatascience.com/metrics-to-evaluate-your-machine-learning-algorithm-f10ba6e38234 Accessed 2024-05-30

CHANBI, M.W.: What is matthews correlation coefficient (MCC)? (2022). https://medium.com/@CuttiE_MarU/what-is-matthews-correlation-coefficient-mcc-bb07a94162ba Accessed 2024-12-13

Gu, Q., Zhu, L., Cai, Z.: Evaluation measures of the classification performance of imbalanced data sets. Communications in Computer and Information Science 51, 461–471 (2009) https://doi.org/10.1007/978-3-642-04962-0_53

Article  Google Scholar 

Müller, D., Soto-Rey, I., Kramer, F.: Towards a guideline for evaluation metrics in medical image segmentation. BMC Research Notes 15(1), 1–8 (2022) https://doi.org/10.1186/s13104-022-06096-yarXiv:2202.05273

Bobak, C.A., Barr, P.J., O’Malley, A.J.: Estimation of an inter-rater intra-class correlation coefficient that overcomes common assumption violations in the assessment of health measurement scales. BMC Medical Research Methodology 18(1), 1–11 (2018) https://doi.org/10.1186/s12874-018-0550-6

Article  Google Scholar 

Mukherjee, R., Manohar, D.D., Das, D.K., Achar, A., Mitra, A., Chakraborty, C.: Automated tissue classification framework for reproducible chronic wound assessment. BioMed Research International 2014 (2014) https://doi.org/10.1155/2014/851582

Ramachandram, D., Ramirez-GarciaLuna, J.L., Fraser, R.D.J., Martínez-Jiménez, M.A., Arriaga-Caballero, J.E., Allport, J.: Fully automated wound tissue segmentation using deep learning on mobile devices: Cohort study. JMIR mHealth and uHealth 10, 1–19 (2022) https://doi.org/10.2196/36977

Article  Google Scholar 

Zahia, S., Sierra-Sosa, D., Garcia-Zapirain, B., Elmaghraby, A.: Tissue classification and segmentation of pressure injuries using convolutional neural networks. Computer Methods and Programs in Biomedicine 159, 51–58 (2018) https://doi.org/10.1016/j.cmpb.2018.02.018

Article  PubMed  Google Scholar 

Veredas, F.J., Luque-Baena, R.M., Martín-Santos, F.J., Morilla-Herrera, J.C., Morente, L.: Wound image evaluation with machine learning. Neurocomputing 164, 112–122 (2015) https://doi.org/10.1016/j.neucom.2014.12.091

Article  Google Scholar 

García-Zapirain, B., Elmogy, M., El-Baz, A., Elmaghraby, A.S.: Classification of pressure ulcer tissues with 3d convolutional neural network. Medical and Biological Engineering and Computing 56, 2245–2258 (2018) https://doi.org/10.1007/s11517-018-1835-y

Article  PubMed  Google Scholar 

Chan, K.S., Chan, Y.M., Tan, A.H.M., Liang, S., Cho, Y.T., Hong, Q., Yong, E., Chong, L.R.C., Zhang, L., Tan, G.W.L., Chandrasekar, S., Lo, Z.J.: Clinical validation of an artificial intelligence-enabled wound imaging mobile application in diabetic foot ulcers. International Wound Journal 19, 114–124 (2022) https://doi.org/10.1111/iwj.13603

Article  PubMed  Google Scholar 

Simpson, V., Hughes, M., Wilkinson, J., Herrick, A.L., Dinsdale, G.: Quantifying digital ulcers in systemic sclerosis: reliability of digital planimetry in measuring lesion size. Arthritis Care and Research, 18 (2017) https://doi.org/10.1002/acr.23300

Ferreira, F., Pires, I.M., Ponciano, V., Costa, M., Villasana, M.V., Garcia, N.M., Zdravevski, E., Lameski, P., Chorbev, I., Mihajlov, M., Trajkovik, V.: Experimental study on wound area measurement with mobile devices. Sensors 21, 1–19 (2021) https://doi.org/10.3390/s21175762

Article  CAS  Google Scholar 

Foltynski, P., Ladyzynski, P.: Internet service for wound area measurement using digital planimetry with adaptive calibration and image segmentation with deep convolutional neural networks. Biocybernetics and Biomedical Engineering 43, 17–29 (2023) https://doi.org/10.1016/j.bbe.2022.11.004

Article  Google Scholar 

Niri, R., Gutierrez, E., Douzi, H., Lucas, Y., Treuillet, S., Castaneda, B., Hernandez, I.: Multi-view data augmentation to improve wound segmentation on 3d surface model by deep learning. IEEE Access 9, 157628–157638 (2021) https://doi.org/10.1109/ACCESS.2021.3130784

Article  Google Scholar 

Ohura, N., Mitsuno, R., Sakisaka, M., Terabe, Y., Morishige, Y., Uchiyama, A., Okoshi, T., Shinji, I., Takushima, A.: Convolutional neural networks for wound detection: The role of artificial intelligence in wound care. Journal of Wound Care 28, 13–24 (2019) https://doi.org/10.12968/jowc.2019.28.sup10.s13

Scebba, G., Zhang, J., Catanzaro, S., Mihai, C., Distler, O., Berli, M., Karlen, W.: Detect-and-segment: A deep learning approach to automate wound image segmentation. Informatics in Medicine Unlocked 29, 100884 (2022) https://doi.org/10.1016/j.imu.2022.100884

Article  Google Scholar 

Wang, C., Anisuzzaman, D.M., Williamson, V., Dhar, M.K., Rostami, B., Niezgoda, J., Gopalakrishnan, S., Yu, Z.: Fully automatic wound segmentation with deep convolutional neural networks (2020). https://doi.org/10.1038/s41598-020-78799-w

Article  Google Scholar 

Huang, H.N., Zhang, T., Yang, C.T., Sheen, Y.J., Chen, H.M., Chen, C.J., Tseng, M.W.: Image segmentation using transfer learning and fast r-cnn for diabetic foot wound treatments. Frontiers in Public Health 10 (2022) https://doi.org/10.3389/fpubh.2022.969846

Dhane, D.M., Maity, M., Mungle, T., Bar, C., Achar, A., Kolekar, M., Chakraborty, C.: Fuzzy spectral clustering for automated delineation of chronic wound region using digital images. Computers in Biology and Medicine 89, 551–560 (2017) https://doi.org/10.1016/j.compbiomed.2017.04.004

Article  Google Scholar 

Li, F., Wang, C., Peng, Y., Yuan, Y., Jin, S.: Wound segmentation network based on location information enhancement. IEEE Access 7, 87223–87232 (2019) https://doi.org/10.1109/ACCESS.2019.2925689

Article  Google Scholar 

Gholami, P., Ahmadi-Pajouh, M.A., Abolftahi, N., Hamarneh, G., Kayvanrad, M.: Segmentation and measurement of chronic wounds for

Comments (0)

No login
gif