Elisabet Alguacil Ruiz, Justo Rueda López, J.M.S.V.: Actualización en la validez de las escalas de evaluación de la evolución de heridas. Heridas y Cicatrización 11, 15–21 (2021)
Wilkinson, H.N., Hardman, M.J.: Wound healing: cellular mechanisms and pathological outcomes. Open Biology (2020)
[Internet], I.o.: Overview: Chronic wounds. Institute for Quality and Efficiency in Health Care (IQWiG). https://www.ncbi.nlm.nih.gov/books/NBK326431/ Accessed 2024-12-10
Mongkornwong, A., Wongwiwat, W., Chansanti, O., Sukprasert, P., Akaranuchat, N.: Hard-to-Heal Wounds. PSU Medical Journal, 1–12 (2024) https://doi.org/10.31584/psumj.2024265285
Marijanović, D., Filko, D.: A systematic overview of recent methods for non-contact chronic wound analysis. Applied Sciences (Switzerland) 10(21), 1–28 (2020) https://doi.org/10.3390/app10217613
Agale, S.V.: Chronic Leg Ulcers : Epidemiology, Aetiopathogenesis, and Management. Ulcers 2013 (2013)
Leaper, D.J., Durani, P.: Topical antimicrobial therapy of chronic wounds healing by secondary intention using iodine products. International Wound Journal 5(2), 361–368 (2008) https://doi.org/10.1111/j.1742-481X.2007.00406.x
Article PubMed PubMed Central Google Scholar
Lindholm, C., Searle, R.: Wound management for the 21st century: combining effectiveness and efficiency. International Wound Journal 13, 5–15 (2016) https://doi.org/10.1111/iwj.12623
Article PubMed PubMed Central Google Scholar
Mohammed, H.T., Bartlett, R.L., Babb, D., Fraser, R.D.J., Mannion, D.: A time motion study of manual versus artificial intelligence methods for wound assessment. PLoS ONE 17, 1–14 (2022) https://doi.org/10.1371/journal.pone.0271742
Zhu, X., Olsson, M.M., Bajpai, R., Järbrink, K., Tang, W.E., Car, J.: Health-related quality of life and chronic wound characteristics among patients with chronic wounds treated in primary care: A cross-sectional study in Singapore. International Wound Journal 19(5), 1121–1132 (2022) https://doi.org/10.1111/iwj.13708
Yazdanpanah, L., Shahbazian, H., Nazari, I., Arti, H.R., Ahmadi, F., Mohammadianinejad, S.E., Cheraghian, B., Hesam, S.: Incidence and risk factors of diabetic foot ulcer: A population-based diabetic foot cohort (ADFC study)-two-year follow-up study. International Journal of Endocrinology 2018 (2018) https://doi.org/10.1155/2018/7631659
Järbrink, K., Ni, G., Sönnergren, H., Schmidtchen, A., Pang, C., Bajpai, R., Car, J.: The humanistic and economic burden of chronic wounds: A protocol for a systematic review. Systematic Reviews 6(1), 1–7 (2017) https://doi.org/10.1186/s13643-016-0400-8
Andersen, C.A., McLeod, K., Steffan, R.: Diagnosis and treatment of the invasive extension of bacteria (cellulitis) from chronic wounds utilising point-of-care fluorescence imaging. International Wound Journal 19(5), 996–1008 (2022) https://doi.org/10.1111/iwj.13696
Schäfer, Z., Mathisen, A., Svendsen, K., Engberg, S., Thomsen, T.R., Kirketerp-Møller, K.: Toward machine-learning-based decision support in diabetes care: A risk stratification study on diabetic foot ulcer and amputation. Frontiers in Medicine 7, 1–13 (2021) https://doi.org/10.3389/fmed.2020.601602
Ros, R.D., Assaloni, R., Michelli, A., Brunato, B., Barro, E., Meloni, M., Miranda, C.: Burden of infected diabetic foot ulcers on hospital admissions and costs in a third-level center. Diabetology 5, 141–150 (2024) https://doi.org/10.3390/diabetology5020011
Gupta, R., Goldstone, L., Eisen, S., Ramachandram, D., Cassata, A., Fraser, R.D.J., Ramirez-Garcialuna, J.L., Bartlett, R., Allport, J.: Towards an ai-based objective prognostic model for quantifying wound healing. IEEE Journal of Biomedical and Health Informatics 28, 666–677 (2024) https://doi.org/10.1109/JBHI.2023.3251901
Ramawat, Y., Nitesh, K., Kumar, V., Pareek, S.: The Role of Artificial Intelligence in Chronic Wound Assessment and Management. The Wocsi Journal of Medical Science 1(1) (2023)
Chakraborty, C.: Performance Analysis of Compression Techniques for Chronic Wound Image Transmission Under Smartphone-Enabled Tele-Wound Network. Research Anthology on Telemedicine Efficacy, Adoption, and Impact on Healthcare Delivery, 345–364 (2021) https://doi.org/10.4018/978-1-7998-8052-3.ch018
Page, M.J., McKenzie, J.E., Bossuyt, P.M., Boutron, I., Hoffmann, T.C., Mulrow, C.D., Shamseer, L., Tetzlaff, J.M., Akl, E.A., Brennan, S.E., Chou, R., Glanville, J., Grimshaw, J.M., Hróbjartsson, A., Lalu, M.M., Li, T., Loder, E.W., Mayo-Wilson, E., McDonald, S., McGuinness, L.A., Stewart, L.A., Thomas, J., Tricco, A.C., Welch, V.A., Whiting, P., Moher, D.: The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ Publishing Group (2021). https://doi.org/10.1136/bmj.n71
Page, M.J., Moher, D., Bossuyt, P.M., Boutron, I., Hoffmann, T.C., Mulrow, C.D., Shamseer, L., Tetzlaff, J.M., Akl, E.A., Brennan, S.E., Chou, R., Glanville, J., Grimshaw, J.M., Hróbjartsson, A., Lalu, M.M., Li, T., Loder, E.W., Mayo-Wilson, E., Mcdonald, S., Mcguinness, L.A., Stewart, L.A., Thomas, J., Tricco, A.C., Welch, V.A., Whiting, P., Mckenzie, J.E.: PRISMA 2020 explanation and elaboration: Updated guidance and exemplars for reporting systematic reviews. BMJ Publishing Group (2021). https://doi.org/10.1136/bmj.n160
Whiting, P.F., Rutjes, A.W.S., Westwood, M.E., Mallett, S., Deeks, J.J., Reitsma, J.B., Leeflang, M.M.G., Sterne, J.A.C., Bossuyt, P.M.M.: Quadas-2: A revised tool for the quality assessment of diagnostic accuracy studies. Annals of Internal Medicine 155(8), 529–536 (2011) https://doi.org/10.7326/0003-4819-155-8-201110180-00009/SUPPL_FILE/155-8-529-SUPPLEMENT.PDF
Jayakumar, S., Sounderajah, V., Normahani, P., Harling, L., Markar, S.R., Ashrafian, H., Darzi, A.: Quality assessment standards in artificial intelligence diagnostic accuracy systematic reviews: a meta-research study. npj Digital Medicine 5(1), 1–13 (2022) https://doi.org/10.1038/s41746-021-00544-y
Mishra, A.: Metrics to Evaluate your Machine Learning Algorithm | by Aditya Mishra — Towards Data Science (2018). https://towardsdatascience.com/metrics-to-evaluate-your-machine-learning-algorithm-f10ba6e38234 Accessed 2024-05-30
CHANBI, M.W.: What is matthews correlation coefficient (MCC)? (2022). https://medium.com/@CuttiE_MarU/what-is-matthews-correlation-coefficient-mcc-bb07a94162ba Accessed 2024-12-13
Gu, Q., Zhu, L., Cai, Z.: Evaluation measures of the classification performance of imbalanced data sets. Communications in Computer and Information Science 51, 461–471 (2009) https://doi.org/10.1007/978-3-642-04962-0_53
Müller, D., Soto-Rey, I., Kramer, F.: Towards a guideline for evaluation metrics in medical image segmentation. BMC Research Notes 15(1), 1–8 (2022) https://doi.org/10.1186/s13104-022-06096-yarXiv:2202.05273
Bobak, C.A., Barr, P.J., O’Malley, A.J.: Estimation of an inter-rater intra-class correlation coefficient that overcomes common assumption violations in the assessment of health measurement scales. BMC Medical Research Methodology 18(1), 1–11 (2018) https://doi.org/10.1186/s12874-018-0550-6
Mukherjee, R., Manohar, D.D., Das, D.K., Achar, A., Mitra, A., Chakraborty, C.: Automated tissue classification framework for reproducible chronic wound assessment. BioMed Research International 2014 (2014) https://doi.org/10.1155/2014/851582
Ramachandram, D., Ramirez-GarciaLuna, J.L., Fraser, R.D.J., Martínez-Jiménez, M.A., Arriaga-Caballero, J.E., Allport, J.: Fully automated wound tissue segmentation using deep learning on mobile devices: Cohort study. JMIR mHealth and uHealth 10, 1–19 (2022) https://doi.org/10.2196/36977
Zahia, S., Sierra-Sosa, D., Garcia-Zapirain, B., Elmaghraby, A.: Tissue classification and segmentation of pressure injuries using convolutional neural networks. Computer Methods and Programs in Biomedicine 159, 51–58 (2018) https://doi.org/10.1016/j.cmpb.2018.02.018
Veredas, F.J., Luque-Baena, R.M., Martín-Santos, F.J., Morilla-Herrera, J.C., Morente, L.: Wound image evaluation with machine learning. Neurocomputing 164, 112–122 (2015) https://doi.org/10.1016/j.neucom.2014.12.091
García-Zapirain, B., Elmogy, M., El-Baz, A., Elmaghraby, A.S.: Classification of pressure ulcer tissues with 3d convolutional neural network. Medical and Biological Engineering and Computing 56, 2245–2258 (2018) https://doi.org/10.1007/s11517-018-1835-y
Chan, K.S., Chan, Y.M., Tan, A.H.M., Liang, S., Cho, Y.T., Hong, Q., Yong, E., Chong, L.R.C., Zhang, L., Tan, G.W.L., Chandrasekar, S., Lo, Z.J.: Clinical validation of an artificial intelligence-enabled wound imaging mobile application in diabetic foot ulcers. International Wound Journal 19, 114–124 (2022) https://doi.org/10.1111/iwj.13603
Simpson, V., Hughes, M., Wilkinson, J., Herrick, A.L., Dinsdale, G.: Quantifying digital ulcers in systemic sclerosis: reliability of digital planimetry in measuring lesion size. Arthritis Care and Research, 18 (2017) https://doi.org/10.1002/acr.23300
Ferreira, F., Pires, I.M., Ponciano, V., Costa, M., Villasana, M.V., Garcia, N.M., Zdravevski, E., Lameski, P., Chorbev, I., Mihajlov, M., Trajkovik, V.: Experimental study on wound area measurement with mobile devices. Sensors 21, 1–19 (2021) https://doi.org/10.3390/s21175762
Foltynski, P., Ladyzynski, P.: Internet service for wound area measurement using digital planimetry with adaptive calibration and image segmentation with deep convolutional neural networks. Biocybernetics and Biomedical Engineering 43, 17–29 (2023) https://doi.org/10.1016/j.bbe.2022.11.004
Niri, R., Gutierrez, E., Douzi, H., Lucas, Y., Treuillet, S., Castaneda, B., Hernandez, I.: Multi-view data augmentation to improve wound segmentation on 3d surface model by deep learning. IEEE Access 9, 157628–157638 (2021) https://doi.org/10.1109/ACCESS.2021.3130784
Ohura, N., Mitsuno, R., Sakisaka, M., Terabe, Y., Morishige, Y., Uchiyama, A., Okoshi, T., Shinji, I., Takushima, A.: Convolutional neural networks for wound detection: The role of artificial intelligence in wound care. Journal of Wound Care 28, 13–24 (2019) https://doi.org/10.12968/jowc.2019.28.sup10.s13
Scebba, G., Zhang, J., Catanzaro, S., Mihai, C., Distler, O., Berli, M., Karlen, W.: Detect-and-segment: A deep learning approach to automate wound image segmentation. Informatics in Medicine Unlocked 29, 100884 (2022) https://doi.org/10.1016/j.imu.2022.100884
Wang, C., Anisuzzaman, D.M., Williamson, V., Dhar, M.K., Rostami, B., Niezgoda, J., Gopalakrishnan, S., Yu, Z.: Fully automatic wound segmentation with deep convolutional neural networks (2020). https://doi.org/10.1038/s41598-020-78799-w
Huang, H.N., Zhang, T., Yang, C.T., Sheen, Y.J., Chen, H.M., Chen, C.J., Tseng, M.W.: Image segmentation using transfer learning and fast r-cnn for diabetic foot wound treatments. Frontiers in Public Health 10 (2022) https://doi.org/10.3389/fpubh.2022.969846
Dhane, D.M., Maity, M., Mungle, T., Bar, C., Achar, A., Kolekar, M., Chakraborty, C.: Fuzzy spectral clustering for automated delineation of chronic wound region using digital images. Computers in Biology and Medicine 89, 551–560 (2017) https://doi.org/10.1016/j.compbiomed.2017.04.004
Li, F., Wang, C., Peng, Y., Yuan, Y., Jin, S.: Wound segmentation network based on location information enhancement. IEEE Access 7, 87223–87232 (2019) https://doi.org/10.1109/ACCESS.2019.2925689
Gholami, P., Ahmadi-Pajouh, M.A., Abolftahi, N., Hamarneh, G., Kayvanrad, M.: Segmentation and measurement of chronic wounds for
Comments (0)