Burden of disease scenarios for 204 countries and territories, 2022–2050: a forecasting analysis for the global burden of disease study 2021. Lancet 2024–05–18;403(10440):2204–2256. https://doi.org/10.1016/S0140-6736(24)00685-8
Wang JG, Zhang W, Li Y, Liu L. Hypertension in china: epidemiology and treatment initiatives. Nat Rev Cardiol 2023–08–01;20(8):531–545. https://doi.org/10.1038/s41569-022-00829-z
The W. Report on cardiovascular health and diseases in china 2022: an updated summary. Biomed Environ Sci 2023–08–20;36(8):669–701. https://doi.org/10.3967/bes2023.106
Wang Z, Chen Z, Zhang L, Wang X, Hao G, Zhang Z, et al. Status of hypertension in china: results from the china hypertension survey, 2012–2015. Circulation 2018–05–29;137(22):2344–2356. https://doi.org/10.1161/CIRCULATIONAHA.117.032380
Parmar MP, Kaur M, Bhavanam S, Mulaka G, Ishfaq L, Vempati R, et al. A systematic review of the effects of smoking on the cardiovascular system and general health. Cureus 2023–04–01;15(4):e38073. https://doi.org/10.7759/cureus.38073
Elmaleh-Sachs A, Schwartz JL, Bramante CT, Nicklas JM, Gudzune KA, Jay M. Obesity management in adults: a review. Jama 2023–11–28;330(20):2000–2015. https://doi.org/10.1001/jama.2023.19897
Gupta DK, Lewis CE, Varady KA, Su YR, Madhur MS, Lackland DT, et al. Effect of dietary sodium on blood pressure: a crossover trial. Jama 2023–12–19;330(23):2258–2266. https://doi.org/10.1001/jama.2023.23651
Aljuraiban GS, Gibson R, Chan DS, Van Horn L, Chan Q. The role of diet in the prevention of hypertension and management of blood pressure: an umbrella review of meta-analyses of interventional and observational studies. Adv Nutr 2024–01–01;15(1):100123. https://doi.org/10.1016/j.advnut.2023.09.011
Ibrahim MM, Damasceno A. Hypertension in developing countries. Lancet 2012–08–11;380(9841):611–619. https://doi.org/10.1016/S0140-6736(12)60861-7
Spatz ES, Ginsburg GS, Rumsfeld JS, Turakhia MP. Wearable digital health technologies for monitoring in cardiovascular medicine. N Engl J Med 2024–01–25;390(4):346–356. https://doi.org/10.1056/NEJMra2301903
Soto JT, Hershman SG, Ashley EA. Combining digital data and artificial intelligence for cardiovascular health. Cardiovasc Res 2021–07–27;117(9):e116-e117. https://doi.org/10.1093/cvr/cvab211]
Xu H, Long H. The effect of smartphone app-based interventions for patients with hypertension: systematic review and meta-analysis. Jmir Mhealth Uhealth 2020–10–19;8(10):e21759. https://doi.org/10.2196/21759
Arshed M, Mahmud A, Minhat HS, Lim PY, Zakar R. Effectiveness of a multifaceted mobile health intervention (multi-aid-package) in medication adherence and treatment outcomes among patients with hypertension in a low- to middle-income country: randomized controlled trial. Jmir Mhealth Uhealth 2024–06–19;12:e50248. https://doi.org/10.2196/50248
Wang Y, Guo F, Wang J, Li Z, Tan W, Xie M, et al. Efficacy of a wechat-based multimodal digital transformation management model in new-onset mild to moderate hypertension: randomized clinical trial. J Med Internet Res 2023–12–04;25:e52464. https://doi.org/10.2196/52464
Khera R, Oikonomou EK, Nadkarni GN, Morley JR, Wiens J, Butte AJ, et al. Transforming cardiovascular care with artificial intelligence: from discovery to practice: jacc state-of-the-art review. J Am Coll Cardiol 2024–07–02;84(1):97–114. https://doi.org/10.1016/j.jacc.2024.05.003
Hu JR, Power JR, Zannad F, Lam C. Artificial intelligence and digital tools for design and execution of cardiovascular clinical trials. Eur Heart J 2024–11–29. https://doi.org/10.1093/eurheartj/ehae794
Leitner J, Chiang PH, Agnihotri P, Dey S. The effect of an ai-based, autonomous, digital health intervention using precise lifestyle guidance on blood pressure in adults with hypertension: single-arm nonrandomized trial. Jmir Cardio 2024–05–28;8:e51916. https://doi.org/10.2196/51916
Yano Y, Nishiyama A, Suzuki Y, Morimoto S, Morikawa T, Gohda T, et al. Relevance of chatgpt's responses to common hypertension-related patient inquiries. Hypertension 2024–01–01;81(1):e1-e4. https://doi.org/10.1161/HYPERTENSIONAHA.123.22084
Niko MM, Karbasi Z, Kazemi M, Zahmatkeshan M. Comparing chatgpt and bing, in response to the home blood pressure monitoring (hbpm) knowledge checklist. Hypertens Res 2024–05–01;47(5):1401–1409. https://doi.org/10.1038/s41440-024-01624-8
Peng C, Yang X, Chen A, Smith KE, PourNejatian N, Costa AB, et al. A study of generative large language model for medical research and healthcare. Npj Digit Med 2023–11–16;6(1):210. https://doi.org/10.1038/s41746-023-00958-w
Petrusic I, Ha WS, Labastida-Ramirez A, Messina R, Onan D, Tana C, et al. Influence of next-generation artificial intelligence on headache research, diagnosis and treatment: the junior editorial board members' vision - part 1. J Headache Pain 2024–09–13;25(1):151. https://doi.org/10.1186/s10194-024-01847-7
Raghunathan R, Jacobs AR, Sant VR, King LJ, Rothberger G, Prescott J, et al. Can large language models address unmet patient information needs and reduce provider burnout in the management of thyroid disease? Surgery 2024–10–17. https://doi.org/10.1016/j.surg.2024.06.075
Choudhury A, Shamszare H. The impact of performance expectancy, workload, risk, and satisfaction on trust in chatgpt: cross-sectional survey analysis. Jmir Hum Factors 2024–05–27;11:e55399. https://doi.org/10.2196/55399
Rodriguez JA, Alsentzer E, Bates DW. Leveraging large language models to foster equity in healthcare. J Am Med Inform Assoc 2024–09–01;31(9):2147–2150. https://doi.org/10.1093/jamia/ocae055
Wu J, Napoleone J, Linke S, Noble M, Turken M, Rakotz M, et al. Long-term results of a digital hypertension self-management program: retrospective cohort study. Jmir Cardio 2023–08–24;7:e43489. https://doi.org/10.2196/43489
Chen B, Dou Y, Yu X, Ma D. Influence of internet-based health management on control of clinical parameters in patients with hypertension: four-year longitudinal study. J Med Internet Res 2023–03–20;25:e42896. https://doi.org/10.2196/42896
Zangger G, Bricca A, Liaghat B, Juhl CB, Mortensen SR, Andersen RM, et al. Benefits and harms of digital health interventions promoting physical activity in people with chronic conditions: systematic review and meta-analysis. J Med Internet Res 2023–07–06;25:e46439. https://doi.org/10.2196/46439
Eyles H, Grey J, Jiang Y, Umali E, McLean R, Te ML, et al. Effectiveness of a sodium-reduction smartphone app and reduced-sodium salt to lower sodium intake in adults with hypertension: findings from the salt alternatives randomized controlled trial. Jmir Mhealth Uhealth 2023–03–09;11:e43675. https://doi.org/10.2196/43675
Acharya S, Neupane G, Seals A, Kc M, Giustini D, Sharma S, et al. Self-measured blood pressure-guided pharmacotherapy: a systematic review and meta-analysis of united states-based telemedicine trials. Hypertension 2024–03–01;81(3):648–657. https://doi.org/10.1161/HYPERTENSIONAHA.123.22109
Vaidyam A, Halamka J, Torous J. Enabling research and clinical use of patient-generated health data (the mindlamp platform): digital phenotyping study. Jmir Mhealth Uhealth 2022–01–07;10(1):e30557. https://doi.org/10.2196/30557
Wang X, Gong Z, Wang G, Jia J, Xu Y, Zhao J, et al. Chatgpt performs on the chinese national medical licensing examination. J Med Syst 2023;47:86. https://doi.org/10.1007/s10916-023-01961-0
Tran H, Yang Z, Yao Z, Yu H. Bioinstruct: instruction tuning of large language models for biomedical natural language processing. J Am Med Inform Assoc 2024–09–01;31(9):1821–1832. https://doi.org/10.1093/jamia/ocae122
Kee X, Sng G, Lim D, Tung J, Abdullah HR, Chowdury AR. Use of a large language model with instruction-tuning for reliable clinical frailty scoring. J Am Geriatr Soc 2024–12–01;72(12):3849–3854. https://doi.org/10.1111/jgs.19114
Nahass GR, Chin SW, Scharf IM, Kazmouz S, Kaplan N, Chiu R, et al. Prompt engineering to increase gpt3.5's performance on the plastic surgery in-service exams. J Plast Reconstr Aesthet Surg 2024–11–01;98:158–160. https://doi.org/10.1016/j.bjps.2024.09.001
Liu S, Wright AP, Mccoy AB, Huang SS, Genkins JZ, Peterson JF, et al. Using large language model to guide patients to create efficient and comprehensive clinical care message. J Am Med Inform Assoc 2024–08–01;31(8):1665–1670. https://doi.org/10.1093/jamia/ocae142
Zhou L, Bao J, Setiawan I, Saptono A, Parmanto B. The mhealth app usability questionnaire (mauq): development and validation study. Jmir Mhealth Uhealth 2019–04–11;7(4):e11500. https://doi.org/10.2196/11500
Boima V, Doku A, Agyekum F, Tuglo LS, Agyemang C. Effectiveness of digital health interventions on blood pressure control, lifestyle behaviours and adherence to medication in patients with hypertension in low-income and middle-income countries: a systematic review and meta-analysis of randomised controlled trials. Eclinicalmedicine 2024–03–01;69:102432. https://doi.org/10.1016/j.eclinm.2024.102432
Ye Z, Xu Y, Tang L, Wu M, Wu B, Zhu T, et al. Predicting long-term prognosis after percutaneous coronary intervention in patients with new onset st-elevation myocardial infarction: development and external validation of a nomogram model. Cardiovasc Diabetol 2023–04–13;22(1):87. https://doi.org/10.1186/s12933-023-01820-9
Zhou T, Wang Y, Xu Y, Xu L, Tang L, Yang Y, et al. Multimodal data integration for enhanced longitudinal prediction for cardiac and cerebrovascular events following initial diagnosis of obstructive sleep apnea syndrome. J Glob Health 2024–05–17;14:4103. https://doi.org/10.7189/jgh.14.04103
Tang L, Wu M, Xu Y, Zhu T, Fang C, Ma K, et al. Multimodal data-driven prognostic model for predicting new-onset st-elevation myocardial infarction following emergency percutaneous coronary intervention. Inflamm Res 2023–09–01;72(9):1799–1809. https://doi.org/10.1007/s00011-023-01781-5
Wang J, Wu X, Sun J, Xu T, Zhu T, Yu F, et al. Prediction of major adverse cardiovascular events in patients with acute coronary syndrome: development and validation of a non-invasive nomogram model based on autonomic nervous system assessment. Front Cardiovasc Med 2022–01–20;9:1053470. https://doi.org/10.3389/fcvm.2022.1053470
Wang J, Xu Y, Zhu J, Wu B, Wang Y, Tan L, et al. Multimodal data-driven, vertical visualization prediction model for early prediction of atherosclerotic cardiovascular disease in patients with new-onset hypertension. J Hypertens 2024–10–01;42(10):1757–1768. https://doi.org/10.1097/HJH.0000000000003798
Wang J, Wang Y, Duan S, Xu L, Xu Y, Yin W, et al. Multimodal data-driven prognostic model for predicting long-term prognosis in patients with ischemic cardiomyopathy and heart failure with preserved ejection fraction after coronary artery bypass grafting: a multicenter cohort study. J Am Heart Assoc 2024–12–03;13(23):e36970. https://doi.org/10.1161/JAHA.124.036970
Sun T, Xu X, Ding Z, Xie H, Ma L, Zhang J, et al. Development of a health behavioral digital intervention for patients with hypertension based on an intelligent health promotion system and wechat: randomized controlled trial. Jmir Mhealth Uhealth 2024–04–05;12:e53006. https://doi.org/10.2196/53006
Liu F, Song T, Yu P, Deng N, Guan Y, Yang Y, et al. Efficacy of an mhealth app to support patients' self-management of hypertension: randomized controlled trial. J Med Internet Res 2023–12–19;25:e43809. https://doi.org/10.2196/43809
Dalakoti M, Wong S, Lee W, Lee J, Yang H, Loong S, et al. Incorporating ai into cardiovascular diseases prevention-insights from singapore. Lancet Reg Health West Pac 2024–07–01;48:101102. https://doi.org/10.1016/j.lanwpc.2024.101102
Kario K, Nomura A, Harada N, Okura A, Nakagawa K, Tanigawa T, et al. Efficacy of a digital therapeutics system in the management of essential hypertension: the herb-dh1 pivotal trial. Eur Heart J 2021–10–21;42(40):4111–4122. https://doi.org/10.1093/eurheartj/ehab559
Bedi S, Liu Y, Orr-Ewing L, Dash D, Koyejo S, Callahan A, et al. Testing and evaluation of health care applications of large language models: a systematic review. Jama 2024–10–15. https://doi.org/10.1001/jama.2024.21700
Nolin-Lapalme A, Theriault-Lauzier P, Corbin D, Tastet O, Sharma A, Hussin JG, et al. Maximising large language model utility in cardiovascular care: a practical guide. Can J Cardiol 2024–10–01;40(10):1774–1787. https://doi.org/10.1016/j.cjca.2024.05.024
Cascella M, Montomoli J, Bellini V, Bignami E. Evaluating the feasibility of chatgpt in healthcare: an analysis of multiple clinical and research scenarios. J Med Syst 2023;47:33. https://doi.org/10.1007/s10916-023-01925-4
Cascella M, Semeraro F, Montomoli J, Bellini V, Piazza O, Bignami E. The breakthrough of large language models release for medical applications: 1-year timeline and perspectives. J Med Syst 2024;48:22. https://doi.org/10.1007/s10916-024-02045-3
Xue X, Zhang D, Sun C, Shi Y, Wang R, Tan T, et al. Xiaoqing: a q&a model for glaucoma based on llms. Comput Biol Med 2024–05–01;174:108399. https://doi.org/10.1016/j.compbiomed.2024.108399
Sezgin E. Redefining virtual assistants in health care: the future with large language models. J Med Internet Res 2024–01–19;26:e53225. https://doi.org/10.2196/53225
Tripathi S, Sukumaran R, Cook TS. Efficient healthcare with large language models: optimizing clinical workflow and enhancing patient care. J Am Med Inform Assoc 2024–05–20;31(6):1436–1440. https://doi.org/10.1093/jamia/ocad258
Feretzakis G, Papaspyridis K, Gkoulalas-Divanis A, Verykios VS. Privacy-preserving techniques in generative ai and large language models: a narrative review. Information 2024–01–01;15(11). https://doi.org/10.3390/info15110697
Feretzakis G, Verykios VS. Trustworthy ai: securing sensitive data in large language models. Ai 2024–01–01;5(4):2773–2800. https://doi.org/10.3390/ai5040134
Denecke K, May R, Rivera-Romero O. Transformer models in healthcare: a survey and thematic analysis of potentials, shortcomings and risks. J Med Syst. 2024;48:23. https://doi.org/10.1007/s10916-024-02043-5
Rao SJ, Isath A, Krishnan P, Tangsrivimol JA, Virk H, Wang Z, et al. Chatgpt: a conceptual review of applications and utility in the field of medicine. J Med Syst 2024;48:59. https://doi.org/10.1007/s10916-024-02043-5
Kalodanis K, Rizomiliotis P, Anagnostopoulos D. European artificial intelligence act: an ai security approach. Information & Computer Security 2024–01–01;32(3):265–281. https://doi.org/10.1108/ICS-10-2022-0165
Willms A, Rhodes RE, Liu S. The development of a hypertension prevention and financial-incentive mhealth program using a "no-code" mobile app builder: development and usability study. Jmir Form Res 2023–04–05;7:e43823. https://doi.org/10.2196/43823
Alessa T, S HM, Alsulamy N, de Witte L. Using a commercially available app for the self-management of hypertension: acceptance and usability study in saudi arabia. Jmir Mhealth Uhealth 2021–02–09;9(2):e24177. https://doi.org/10.2196/24177
Shi X, Wang Y, Wang Y, Wang J, Peng C, Cheng S, et al. The effectiveness of digital animation-based multistage education for patients with atrial fibrillation catheter ablation: randomized clinical trial. J Med Internet Res 2025;27:e65685. https://doi.org/10.2196/65685
Comments (0)