Meyer, U. A., Zanger, U. M., and Schwab, M., Omics and drug response. Annu. Rev. Pharmacol. Toxicol. 53, 475–502, 2013.
Feng, F., Shen, B., Mou, X., Li, Y., and Li, H., Large-scale pharmacogenomic studies and drug response prediction for personalized cancer medicine. J. Genet. Genomics 48(7), 540–551, 2021
Weinshilboum, R. M., and Wang, L., Pharmacogenomics: precision medicine and drug response. In: Mayo Clinic Proceedings. Vol. 92, pp. 1711–1722. Elsevier, 2017.
Wheeler, H. E., Maitland, M. L., Dolan, M. E., Cox, N. J., and Ratain, M. J., Cancer pharmacogenomics: strategies and challenges. Nat. Rev. Genet. 14(1), 23–34, 2013.
Yang, W., Soares, J., Greninger, P., Edelman, E. J., Lightfoot, H., Forbes, S., Bindal, N., Beare, D., Smith, J. A., Thompson, I. R., et al., Genomics of drug sensitivity in cancer (gdsc): a resource for therapeutic biomarker discovery in cancer cells. Nucleic Acids Res. 41(D1), 955–961, 2012.
Workman, P., The nci-60 human tumor cell line screen: A catalyst for progressive evolution of models for discovery and development of cancer drugs. Cancer Res. 83(19), 3170–3173, 2023.
Rees, M. G., Seashore-Ludlow, B., Cheah, J. H., Adams, D. J., Price, E. V., Gill, S., Javaid, S., Coletti, M. E., Jones, V. L., Bodycombe, N. E., et al., Correlating chemical sensitivity and basal gene expression reveals mechanism of action. Nat. Chem. Biol. 12(2), 109–116, 2016.
Smirnov, P., Kofia, V., Maru, A., Freeman, M., Ho, C., El-Hachem, N., Adam, G. -A., Ba-Alawi, W., Safikhani, Z., and Haibe-Kains, B., Pharmacodb: an integrative database for mining in vitro anticancer drug screening studies. Nucleic Acids Res. 46(D1), 994–1002, 2018
Barretina, J., Caponigro, G., Stransky, N., Venkatesan, K., Margolin, A. A., Kim, S., Wilson, C. J., Lehár, J., Kryukov, G. V., Sonkin, D., et al., The cancer cell line encyclopedia enables predictive modelling of anticancer drug sensitivity. Nature 483(7391), 603–607, 2012.
Article PubMed PubMed Central Google Scholar
Su, R., Liu, X., Xiao, G., and Wei, L., Meta-gdbp: a high-level stacked regression model to improve anticancer drug response prediction. Brief. Bioinform. 21(3), 996–1005, 2020.
Nguyen, L., Nguyen Vo, T. -H., Trinh, Q. H., Nguyen, B. H., Nguyen-Hoang, P. -U., Le, L., and Nguyen, B. P., ianp-ec: identifying anticancer natural products using ensemble learning incorporated with evolutionary computation. J. Chem. Inf. Model. 62(21), 5080–5089, 2022.
Zhou, J. -B., Tang, D., He, L., Lin, S., Lei, J. H., Sun, H., Xu, X., and Deng, C. -X., Machine learning model for anti-cancer drug combinations: Analysis, prediction, and validation. Pharmacol. Res. 194, 106830, 2023.
Nguyen-Vo, T. -H., Do, T. T., and Nguyen, B. P., Multitask learning on graph convolutional residual neural networks for screening of multitarget anticancer compounds. J. Chem. Inf. Model. 64(18), 6957–6968, 2024.
Li, M., Wang, Y., Zheng, R., Shi, X., Li, Y., Wu, F. -X., Wang, J., Deepdsc: a deep learning method to predict drug sensitivity of cancer cell lines. IEEE/ACM Trans. Comput. Biol. Bioinform. 18(2), 575–582, 2019.
Gerdes, H., Casado, P., Dokal, A., Hijazi, M., Akhtar, N., Osuntola, R., Rajeeve, V., Fitzgibbon, J., Travers, J., Britton, D., et al., Drug ranking using machine learning systematically predicts the efficacy of anti-cancer drugs. Nat. Commun. 12(1), 1850, 2021.
Chang, Y., Park, H., Yang, H. -J., Lee, S., Lee, K. -Y., Kim, T. S., Jung, J., and Shin, J. -M., Cancer drug response profile scan (cdrscan): a deep learning model that predicts drug effectiveness from cancer genomic signature. Scientific Reports 8(1), 8857, 2018.
Article PubMed PubMed Central Google Scholar
Zuo, Z., Wang, P., Chen, X., Tian, L., Ge, H., and Qian, D., Swnet: a deep learning model for drug response prediction from cancer genomic signatures and compound chemical structures. BMC Bioinform. 22, 1–16, 2021.
Baptista, D., Ferreira, P. G., and Rocha, M., Deep learning for drug response prediction in cancer. Brief. Bioinform. 22(1), 360–379, 2021.
An, X., Chen, X., Yi, D., Li, H., and Guan, Y., Representation of molecules for drug response prediction. Brief. Bioinform. 23(1), 393, 2022.
Nguyen, T., Le, H., Quinn, T. P., Nguyen, T., Le, T. D., and Venkatesh, S., Graphdta: predicting drug–target binding affinity with graph neural networks. Bioinformatics 37(8), 1140–1147, 2021
Nguyen, T., Nguyen, G. T., Nguyen, T., and Le, D. -H., Graph convolutional networks for drug response prediction. IEEE/ACM Trans. Comput. Biol. Bioinforma. 19(1), 146–154, 2021.
Siegel, R. L., Miller, K. D., Wagle, N. S., and Jemal, A., Cancer statistics, 2023. Ca. Cancer J. Clin. 73(1), 17–48, 2023.
Kim, S., Exploring chemical information in pubchem. Curr. Protoc. 1(8), 217, 2021.
Bento, A. P., Hersey, A., Félix, E., Landrum, G., Gaulton, A., Atkinson, F., Bellis, L. J., De Veij, M., and Leach, A. R., An open source chemical structure curation pipeline using rdkit. J. Cheminformatics 12, 1–16, 2020.
Ramsundar, B., Molecular machine learning with deepchem. PhD thesis, Stanford University, 2018.
Veličković, P., Cucurull, G., Casanova, A., Romero, A., Lio, P., and Bengio, Y., Graph attention networks. arXiv preprint arXiv:1710.10903 2017.
Xu, J., Li, Z., Du, B., Zhang, M., and Liu, J., Reluplex made more practical: Leaky relu. In: 2020 IEEE Symposium on Computers and Communications (ISCC). pp. 1–7. IEEE, 2020.
Khajenezhad, A., Osia, S. A., Karimian, M., and Beigy, H., Gransformer: Transformer-based graph generation. arXiv preprint arXiv:2203.13655 2022.
Vo, T. H., Nguyen, N. T. K., and Le, N. Q. K., Improved prediction of drug-drug interactions using ensemble deep neural networks. Med. Drug Discov. 17, 100149, 2023.
Kha, Q. -H., Tran, T. -O., Nguyen, V. -N., Than, K., Le, N. Q. K., et al., An interpretable deep learning model for classifying adaptor protein complexes from sequence information. Methods 207, 90–96, 2022.
Li, B., Dai, C., Wang, L., Deng, H., Li, Y., Guan, Z., Ni, H., A novel drug repurposing approach for non-small cell lung cancer using deep learning. PLoS One 15(6), 0233112, 2020.
Wessolly, M., Stephan-Falkenau, S., Streubel, A., Werner, R., Borchert, S., Griff, S., Mairinger, E., Walter, R. F., Bauer, T., Eberhardt, W. E., et al., A novel epitope quality-based immune escape mechanism reveals patient’s suitability for immune checkpoint inhibition. Cancer Manag. Res. 7881–7890, 2020.
Ahmed, K. T., Park, S., Jiang, Q., Yeu, Y., Hwang, T., and Zhang, W., Network-based drug sensitivity prediction. BMC Med. Genet. 13(11), 1–10, 2020.
Comments (0)