A PopPBPK-RL approach for precision dosing of benazepril in renal impaired patients

Almirall D, Compton SN, Gunlicks-Stoessel M, Duan N, Murphy SA (2012) Designing a pilot sequential multiple assignment randomized trial for developing an adaptive treatment strategy. Stat Med 31:1887–1902. https://doi.org/10.1002/sim.4512

Article  PubMed  PubMed Central  Google Scholar 

Chen Z, Marple K, Salazar E, Gupta G, Tamil L (2016) A physician advisory system for chronic heart failure management based on knowledge patterns. Theory Pract Logic Program 16:604–618. https://doi.org/10.1017/S1471068416000429

Article  Google Scholar 

Hannes K et al (2005) Implementing evidence-based medicine in general practice: a focus group based study. BMC Family Pract. https://doi.org/10.1186/1471-2296-6-37

Article  Google Scholar 

Garcia-Abeijon P et al (2023) Factors associated with underreporting of adverse drug reactions by health care professionals: a systematic review update. Drug Safety 46:625–636. https://doi.org/10.1007/s40264-023-01302-7

Article  PubMed  PubMed Central  Google Scholar 

Montane E, Castells X (2021) Epidemiology of drug-related deaths in european hospitals: a systematic review and meta-analysis of observational studies. Br J Clin Pharmacol 87:3659–3671

Article  CAS  PubMed  Google Scholar 

Maxfield K, Zineh I (2021) Precision dosing: a clinical and public health imperative. JAMA 325:1505. https://doi.org/10.1001/jama.2021.1004

Article  PubMed  Google Scholar 

Peck RW (2020) Precision dosing: an industry perspective. Clin Pharmacol Ther 109:47–50. https://doi.org/10.1002/cpt.2064

Article  PubMed  PubMed Central  Google Scholar 

Sheiner LB (1969) Computer-aided long-term anticoagulation therapy. Comput Biomed Res 2:507–518. https://doi.org/10.1016/0010-4809(69)90030-5

Article  CAS  PubMed  Google Scholar 

Jelliffe RW (1969) Administration of digoxin. Dis Chest 56:56–60. https://doi.org/10.1378/chest.56.1.56

Article  CAS  PubMed  Google Scholar 

Wright DF, Martin JH, Cremers S (2019) Spotlight commentary: Modelinformed precision dosing must demonstrate improved patient outcomes. Br J Clin Pharmacol 85:2238–2240. https://doi.org/10.1111/bcp.14050

Article  PubMed  PubMed Central  Google Scholar 

Polasek TM et al (2018) Toward dynamic prescribing information: Codevelopment of companion model-informed precision dosing tools in drug development. Clin Pharmacol Drug Develop 8:418–425. https://doi.org/10.1002/cpdd.638

Article  CAS  Google Scholar 

Peters SA (2008) Evaluation of a generic physiologically based pharmacokinetic model for lineshape analysis. Clin Pharmacokinet 47:261–275. https://doi.org/10.2165/00003088-200847040-00004

Article  CAS  PubMed  Google Scholar 

Willmann S et al (2007) Development of a physiology-based whole-body population model for assessing the influence of individual variability on the pharmacokinetics of drugs. J Pharmacokinet Pharmacodyn 34:401–431. https://doi.org/10.1007/s10928-007-9053-5

Article  PubMed  Google Scholar 

Lippert J et al (2012) A mechanistic, model-based approach to safety assessment in clinical development. CPT: Pharmacomet Syst Pharmacol 1:1–8. https://doi.org/10.1038/psp.2012.14

Article  CAS  Google Scholar 

Ribba B, Bram DS, Baverel PG, Peck RW (2022) Model enhanced reinforcement learning to enable precision dosing: a theoretical case study with dosing of propofol. CPT: Pharmacomet Syst Pharmacol 11:1497–1510. https://doi.org/10.1002/psp4.12858

Article  CAS  Google Scholar 

Visentin R, Cobelli C, Dalla Man C (2020) The padova type 2 diabetes simulator from triple-tracer single-meal studies: In silico trials also possible in rare but not-so-rare individuals. Diabet Technol Ther 22:892–903. https://doi.org/10.1089/dia.2020.0110

Article  CAS  Google Scholar 

Levy G (1977) Pharmacokinetics in renal disease. Am J Med 62:461–465. https://doi.org/10.1016/0002-9343(77)90397-7

Article  CAS  PubMed  Google Scholar 

Reinisch V, Paudel A, Pinto JT (2023) Development of a digital interface for personalized dosing in renal impaired patients: a case-study using the ACE-inhibitor benazepril. IOS Press, Amsterdam. https://doi.org/10.3233/SHTI230027

Book  Google Scholar 

Balfour JA, Goa KL (1991) Benazepril: a review of its pharmacodynamic and pharmacokinetic properties, and therapeutic efficacy in hypertension and congestive heart failure. Drugs 42:511–539. https://doi.org/10.2165/00003495-199142030-00008

Article  CAS  PubMed  Google Scholar 

Sheiner LB, Beal S, Rosenberg B, Marathe VV (1979) Forecasting individual pharmacokinetics. Clin Pharmacol Ther 26:294–305. https://doi.org/10.1002/cpt1979263294

Article  CAS  PubMed  Google Scholar 

Duffull SB, Begg EJ, Robinson BA, Deely JJ (1997) A sequential bayesian algorithm for dose individualisation of carboplatin. Cancer Chemother Pharmacol 39:317–326. https://doi.org/10.1007/s002800050578

Article  CAS  PubMed  Google Scholar 

Lu J, Deng K, Zhang X, Liu G, Guan Y (2021) Neural-ode for pharmacokinetics modeling and its advantage to alternative machine learning models in predicting new dosing regimens. iScience 24:102804. https://doi.org/10.1016/j.isci.2021.102804

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yu C, Liu J, Zhao H (2019) Inverse reinforcement learning for intelligent mechanical ventilation and sedative dosing in intensive care units. BMC Med Inform Decis Mak. https://doi.org/10.1186/s12911-019-0763-6

Article  PubMed  PubMed Central  Google Scholar 

Ghassemi M, Alhanai T, Westover M, Mark T, Nemati S (2018) Personalized medication dosing using volatile data streams, AAAI’18. New Orleans, Louisiana. https://aaai.org/ocs/index.php/WS/AAAIW18/paper/view/17234

Lin R, Stanley MD, Ghassemi MM, Nemati S (2018) A deep deterministic policy gradient approach to medication dosing and surveillance in the icu. IEEE. https://doi.org/10.1109/EMBC.2018.8513203

Padmanabhan R, Meskin N, Haddad WM (2019) Optimal adaptive control of drug dosing using integral reinforcement learning. Math Biosci 309:131–142. https://doi.org/10.1016/j.mbs.2019.01.012

Article  PubMed  Google Scholar 

Borera EC, Moore BL, Doufas AG, Pyeatt LD (2011) An adaptive neural network filter for improved patient state estimation in closed-loop anesthesia control. IEEE. https://doi.org/10.1109/ictai.2011.15

Padmanabhan R, Meskin N, Haddad WM (2014) Closed-loop control of anesthesia and mean arterial pressure using reinforcement learning. IEEE. https://doi.org/10.1109/ADPRL.2014.7010644

Padmanabhan R, Meskin N, Haddad WM (2017) Reinforcement learning-based control for combined infusion of sedatives and analgesics. IEEE. https://doi.org/10.1109/codit.2017.8102643

Raghu A, Komorowski M, Celi LA, Szolovits P, Ghassemi M, DoshiVelez F et al (eds) (2017) Continuous state-space models for optimal sepsis treatment: a deep reinforcement learning approach. (eds Doshi-Velez, F. et al) Proceedings of the 2nd machine learning for healthcare conference, Vol. 68 of Proceedings of machine learning research, 147–163. PMLR. https://proceedings.mlr.press/v68/raghu17a.html

Sun L, von Moltke L, Rowland Yeo K (2020) Application of physiologically based pharmacokinetic modeling to predict the effect of renal impairment on the pharmacokinetics of olanzapine and samidorphan given in combination. Clin Pharmacokinet 60:637–647. https://doi.org/10.1007/s40262-020-00969-w

Article  CAS  PubMed  PubMed Central  Google Scholar 

Li L-P et al (2017) Evaluation of renal blood flow in chronic kidney disease using arterial spin labeling perfusion magnetic resonance imaging. Kidney Int Rep 2:36–43. https://doi.org/10.1016/j.ekir.2016.09.003

Article  PubMed  Google Scholar 

Schaefer AJ, Bailey MD, Shechter SM, Roberts MS (2005) Modeling medical treatment using markov decision processes. Springer, US, pp 593–612

Google Scholar 

Sutton RS, Barto AG (2018) Reinforcement learning: an introduction. MIT press, Cambridge

Google Scholar 

Watkins CJCH (1989) Learning from delayed rewards

van Hasselt H (2012) Reinforcement learning in continuous state and action spaces. Springer, Berlin Heidelberg, pp 207–251

Book  Google Scholar 

Mitchell T (1997) Machine Learning McGraw-Hill series in computer science. McGrawHill Professional, New York

Google Scholar 

Gorostidi M et al (2014) Spanish society of nephrology document on KDIGO guidelines for the assessment and treatment of chronic kidney disease. Nefrologia 34:302–316

PubMed  Google Scholar 

Organization WH et al (2005) Surveillance of chronic disease risk factors: country level data and comparable estimates

Comments (0)

No login
gif