Action of the Terminal Complement Pathway on Cell Membranes

Aiello S, Gastoldi S, Galbusera M, Ruggenenti P, Portalupi V, Rota S, Rubis N, Liguori L, Conti S, Tironi M, Gamba S, Santarsiero D, Benigni A, Remuzzi G, Noris M (2022) C5a and C5aR1 are key drivers of microvascular platelet aggregation in clinical entities spanning from aHUS to COVID-19. Blood Adv 6(3):866–881. https://doi.org/10.1182/bloodadvances.2021005246

Article  CAS  PubMed  PubMed Central  Google Scholar 

Aleshin AE, DiScipio RG, Stec B, Liddington RC (2012a) Crystal structure of C5b–6 suggests structural basis for priming assembly of the membrane attack complex. J Biol Chem 287(23):19642–19652. https://doi.org/10.1074/jbc.M112.361121

Article  CAS  PubMed  PubMed Central  Google Scholar 

Aleshin AE, Schraufstatter IU, Stec B, Bankston LA, Liddington RC, DiScipio RG (2012b) Structure of complement C6 suggests a mechanism for initiation and unidirectional, sequential assembly of membrane attack complex (MAC). J Biol Chem 287(13):10210–10222. https://doi.org/10.1074/jbc.M111.327809

Article  CAS  PubMed  PubMed Central  Google Scholar 

Al-Sharif WZ, Sunyer JO, Lambris JD, Smith LC (1998) Sea urchin coelomocytes specifically express a homologue of the complement component C3. J Immunol 160(6):2983–2997. https://www.ncbi.nlm.nih.gov/pubmed/9510203

An G, Ren G, An F, Zhang C (2014) Role of C5a–C5aR axis in the development of atherosclerosis. Sci China Life Sci 57(8):790–794. https://doi.org/10.1007/s11427-014-4711-5

Article  CAS  PubMed  Google Scholar 

An G, Li B, Liu X, Zhang M, Gao F, Zhao Y, An F, Zhang Y, Zhang C (2016) Overexpression of complement component C5a accelerates the development of atherosclerosis in ApoE-knockout mice. Oncotarget 7(35):56060–56070. https://doi.org/10.18632/oncotarget.11180

Article  PubMed  PubMed Central  Google Scholar 

Apostolidis SA, Sarkar A, Giannini HM, Goel RR, Mathew D, Suzuki A, Baxter AE, Greenplate AR, Alanio C, Abdel-Hakeem M, Oldridge DA, Giles JR, Wu JE, Chen Z, Huang YJ, Belman J, Pattekar A, Manne S, Kuthuru O et al (2022) Signaling through FcgammaRIIA and the C5a–C5aR pathway mediate platelet hyperactivation in COVID-19. Front Immunol 13:834988. https://doi.org/10.3389/fimmu.2022.834988

Article  CAS  PubMed  PubMed Central  Google Scholar 

Arbore G, West EE, Spolski R, Robertson AAB, Klos A, Rheinheimer C, Dutow P, Woodruff TM, Yu ZX, O’Neill LA, Coll RC, Sher A, Leonard WJ, Kohl J, Monk P, Cooper MA, Arno M, Afzali B, Lachmann HJ et al (2016) T helper 1 immunity requires complement-driven NLRP3 inflammasome activity in CD4(+) T cells. Science 352(6292):aad1210. https://doi.org/10.1126/science.aad1210

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bahia El Idrissi N, Bosch S, Ramaglia V, Aronica E, Baas F, Troost D (2016) Complement activation at the motor end-plates in amyotrophic lateral sclerosis. J Neuroinflammation 13(1):72. https://doi.org/10.1186/s12974-016-0538-2

Article  CAS  PubMed  PubMed Central  Google Scholar 

Baidya M, Kumari P, Dwivedi-Agnihotri H, Pandey S, Chaturvedi M, Stepniewski TM, Kawakami K, Cao Y, Laporte SA, Selent J, Inoue A, Shukla AK (2020) Key phosphorylation sites in GPCRs orchestrate the contribution of beta-Arrestin 1 in ERK1/2 activation. EMBO Rep 21(9):e49886. https://doi.org/10.15252/embr.201949886

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bamberg CE, Mackay CR, Lee H, Zahra D, Jackson J, Lim YS, Whitfeld PL, Craig S, Corsini E, Lu B, Gerard C, Gerard NP (2010) The C5a receptor (C5aR) C5L2 is a modulator of C5aR-mediated signal transduction. J Biol Chem 285(10):7633–7644. https://doi.org/10.1074/jbc.M109.092106

Article  CAS  PubMed  Google Scholar 

Bao L, Osawe I, Puri T, Lambris JD, Haas M, Quigg RJ (2005) C5a promotes development of experimental lupus nephritis which can be blocked with a specific receptor antagonist. Eur J Immunol 35(8):2496–2506. https://doi.org/10.1002/eji.200526327

Article  CAS  PubMed  Google Scholar 

Bayly-Jones C, Bubeck D, Dunstone MA (2017) The mystery behind membrane insertion: a review of the complement membrane attack complex. Philos Trans R Soc Lond B Biol Sci. https://doi.org/10.1098/rstb.2016.0221

Article  PubMed  PubMed Central  Google Scholar 

Bayly-Jones C, Ho BHT, Lau C, Leung EWW, D’Andrea L, Lupton CJ, Ekkel SM, Venugopal H, Whisstock JC, Mollnes TE, Spicer BA, Dunstone MA (2023) The neoepitope of the complement C5b–9 Membrane Attack Complex is formed by proximity of adjacent ancillary regions of C9. Commun Biol 6(1):42. https://doi.org/10.1038/s42003-023-04431-y

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bickerstaff MC, Botto M, Hutchinson WL, Herbert J, Tennent GA, Bybee A, Mitchell DA, Cook HT, Butler PJ, Walport MJ, Pepys MB (1999) Serum amyloid P component controls chromatin degradation and prevents antinuclear autoimmunity. Nat Med 5(6):694–697. https://doi.org/10.1038/9544

Article  CAS  PubMed  Google Scholar 

Biesecker G, Katz S, Koffler D (1981) Renal localization of the membrane attack complex in systemic lupus erythematosus nephritis. J Exp Med 154(6):1779–1794. https://doi.org/10.1084/jem.154.6.1779

Article  CAS  PubMed  Google Scholar 

Boccuni P, Del Vecchio L, Di Noto R, Rotoli B (2000) Glycosyl phosphatidylinositol (GPI)-anchored molecules and the pathogenesis of paroxysmal nocturnal hemoglobinuria. Crit Rev Oncol Hematol 33(1):25–43. https://doi.org/10.1016/s1040-8428(99)00052-9

Article  CAS  PubMed  Google Scholar 

Bonecchi R, Graham GJ (2016) Atypical chemokine receptors and their roles in the resolution of the inflammatory response. Front Immunol 7:224. https://doi.org/10.3389/fimmu.2016.00224

Article  CAS  PubMed  PubMed Central  Google Scholar 

Brodsky RA (2014) Paroxysmal nocturnal hemoglobinuria. Blood 124(18):2804–2811. https://doi.org/10.1182/blood-2014-02-522128

Article  CAS  PubMed  PubMed Central  Google Scholar 

Burgi B, Brunner T, Dahinden CA (1994) The degradation product of the C5a anaphylatoxin C5adesarg retains basophil-activating properties. Eur J Immunol 24(7):1583–1589. https://doi.org/10.1002/eji.1830240720

Article  CAS  PubMed  Google Scholar 

Caillon A, Trimaille A, Favre J, Jesel L, Morel O, Kauffenstein G (2022) Role of neutrophils, platelets, and extracellular vesicles and their interactions in COVID-19-associated thrombopathy. J Thromb Haemost 20(1):17–31. https://doi.org/10.1111/jth.15566

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cain SA, Monk PN (2002) The orphan receptor C5L2 has high affinity binding sites for complement fragments C5a and C5a des-Arg(74). J Biol Chem 277(9):7165–7169. https://doi.org/10.1074/jbc.C100714200

Article  CAS  PubMed  Google Scholar 

Carpanini SM, Torvell M, Bevan RJ, Byrne RAJ, Daskoulidou N, Saito T, Saido TC, Taylor PR, Hughes TR, Zelek WM, Morgan BP (2022) Terminal complement pathway activation drives synaptic loss in Alzheimer’s disease models. Acta Neuropathol Commun 10(1):99. https://doi.org/10.1186/s40478-022-01404-w

Article  CAS  PubMed  PubMed Central  Google Scholar 

Carvalho K, Schartz ND, Balderrama-Gutierrez G, Liang HY, Chu SH, Selvan P, Gomez-Arboledas A, Petrisko TJ, Fonseca MI, Mortazavi A, Tenner AJ (2022) Modulation of C5a–C5aR1 signaling alters the dynamics of AD progression. J Neuroinflammation 19(1):178. https://doi.org/10.1186/s12974-022-02539-2

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chang MK, Binder CJ, Torzewski M, Witztum JL (2002) C-reactive protein binds to both oxidized LDL and apoptotic cells through recognition of a common ligand: phosphorylcholine of oxidized phospholipids. Proc Natl Acad Sci U S A 99(20):13043–13048. https://doi.org/10.1073/pnas.192399699

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chirco KR, Tucker BA, Stone EM, Mullins RF (2016) Selective accumulation of the complement membrane attack complex in aging choriocapillaris. Exp Eye Res 146:393–397. https://doi.org/10.1016/j.exer.2015.09.003

Comments (0)

No login
gif