Siegel RL, Miller KD, Wagle NS, Jemal A. Cancer statistics, 2023. Ca Cancer J Clin. 2023;73(1):17–48.
Lea D, Catcheside D. The mechanism of the induction by radiation of chromosome aberrations in Tradescantia. J Genet. 1942;44:216–45.
Fowler JF. The linear-quadratic formula and progress in fractionated radiotherapy. Br J Radiol. 1989;62(740):679–94.
Niemierko A, Goitein M. Implementation of a model for estimating tumor control probability for an inhomogeneously irradiated tumor. Radiother Oncol. 1993;29(2):140–7.
Goitein M, Niemierko A, Okunieff P. The probability of controlling an inhomogeneously irradiated tumor. Eval Treatm Plan Part Beam Radiother. 1987;5:1–58.
Oelkfe U, Scholz C. Dose calculation. algorithms New technologies in radiation oncology. Springer; 2006. p. 187–96.
Andreo P. Monte Carlo simulations in radiotherapy dosimetry. Radiat Oncol. 2018;13(1):121.
PubMed PubMed Central Google Scholar
Wu Q, Mohan R. Algorithms and functionality of an intensity modulated radiotherapy optimization system. Med Phys. 2000;27(4):701–11.
Mageras GS, Mohan R. Application of fast simulated annealing to optimization of conformal radiation treatments. Med Phys. 1993;20(3):639–47.
Zhong H, Peters T, Siebers JV. FEM-based evaluation of deformable image registration for radiation therapy. Phys Med Biol. 2007;52(16):4721–38.
Bai W, Brady M. Regularized B-spline deformable registration for respiratory motion correction in PET images. Phys Med Biol. 2009;54(9):2719–36.
Sotiras A, Davatzikos C, Paragios N. Deformable medical image registration: a survey. IEEE Trans Med Imaging. 2013;32(7):1153–90.
PubMed PubMed Central Google Scholar
Nahum AE. The radiobiology of hypofractionation. Clin Oncol (R Coll Radiol). 2015;27(5):260–9.
Esplen N, Mendonca MS, Bazalova-Carter M. Physics and biology of ultrahigh dose-rate (FLASH) radiotherapy: a topical review. Phys Med Biol. 2020;65(23):23tr03.
Asur R, Butterworth KT, Penagaricano JA, Prise KM, Griffin RJ. High dose bystander effects in spatially fractionated radiation therapy. Cancer Lett. 2015;356(1):52–7.
Bekker RA, Kim S, Pilon-Thomas S, Enderling H. Mathematical modeling of radiotherapy and its impact on tumor interactions with the immune system. Neoplasia. 2022;28: 100796.
CAS PubMed PubMed Central Google Scholar
Mahlbacher GE, Reihmer KC, Frieboes HB. Mathematical modeling of tumor-immune cell interactions. J Theor Biol. 2019;469:47–60.
CAS PubMed PubMed Central Google Scholar
Yankeelov TE, An G, Saut O, Luebeck EG, Popel AS, Ribba B, et al. Multi-scale modeling in clinical oncology: opportunities and barriers to success. Ann Biomed Eng. 2016;44(9):2626–41.
PubMed PubMed Central Google Scholar
Chakraborty S, Hosen MI, Ahmed M, Shekhar HU. Onco-multi-OMICS approach: a new frontier in cancer research. Biomed Res Int. 2018;2018:9836256.
PubMed PubMed Central Google Scholar
Zheng D, Grandgenett PM, Zhang Q, Baine M, Shi Y, Du Q, et al. radioGWAS links radiome to genome to discover driver genes with somatic mutations for heterogeneous tumor image phenotype in pancreatic cancer. Sci Rep. 2024;14(1):12316.
CAS PubMed PubMed Central Google Scholar
Chang DS, Lasley FD, Das IJ, Mendonca MS, Dynlacht JR, Chang DS, et al. Stochastic, deterministic, and heritable effects (and some radiation protection basics). Basic Radiother Phys Biol 2021:337–48.
Jarrett D, Stride E, Vallis K, Gooding MJ. Applications and limitations of machine learning in radiation oncology. Br J Radiol. 2019;92(1100):20190001.
PubMed PubMed Central Google Scholar
O’Donoghue JA. The response of tumours with Gompertzian growth characteristics to fractionated radiotherapy. Int J Radiat Biol. 1997;72(3):325–39.
Zhou S, Zheng D, Fan Q, Yan Y, Wang S, Lei Y, et al. Minimum dose rate estimation for pulsed FLASH radiotherapy: a dimensional analysis. Med Phys. 2020;47(7):3243–9.
Bedford JL. Calculation of absorbed dose in radiotherapy by solution of the linear Boltzmann transport equations. Phys Med Biol. 2019;64(2):02tr1.
Kim M, Ghate A, Phillips MH. A stochastic control formalism for dynamic biologically conformal radiation therapy. Eur J Oper Res. 2012;219(3):541–56.
Sachs RK, Shuryak I, Brenner D, Fakir H, Hlatky L, Hahnfeldt P. Second cancers after fractionated radiotherapy: stochastic population dynamics effects. J Theor Biol. 2007;249(3):518–31.
PubMed PubMed Central Google Scholar
Webb S. Optimum parameters in a model for tumour control probability including interpatient heterogeneity. Phys Med Biol. 1994;39(11):1895–914.
Zaider M, Hanin L. Tumor control probability in radiation treatment. Med Phys. 2011;38(2):574–83.
Fornalski KW, Dobrzyński L, Janiak MK. A stochastic markov model of cellular response to radiation. Dose Response. 2011;9(4):477–96.
CAS PubMed PubMed Central Google Scholar
Van Liedekerke P, Palm M, Jagiella N, Drasdo D. Simulating tissue mechanics with agent-based models: concepts, perspectives and some novel results. Comput Part Mech. 2015;2:401–44.
Frieboes HB, Jin F, Chuang YL, Wise SM, Lowengrub JS, Cristini V. Three-dimensional multispecies nonlinear tumor growth-II: Tumor invasion and angiogenesis. J Theor Biol. 2010;264(4):1254–78.
CAS PubMed PubMed Central Google Scholar
Tsoularis A, Wallace J. Analysis of logistic growth models. Math Biosci. 2002;179(1):21–55.
Tjørve KMC, Tjørve E. The use of Gompertz models in growth analyses, and new Gompertz-model approach: an addition to the Unified-Richards family. PLoS ONE. 2017;12(6): e0178691.
PubMed PubMed Central Google Scholar
Miranda LM, Souza AM. Fractality in tumor growth at the avascular stage from a generalization of the logistic-Gompertz dynamics. Physica A. 2023;618: 128664.
Szabó A, Merks RM. Cellular potts modeling of tumor growth, tumor invasion, and tumor evolution. Front Oncol. 2013;3:87.
PubMed PubMed Central Google Scholar
He X, Lee B, Jiang Y. Extracellular matrix in cancer progression and therapy. Med Rev. 2022;2(2):125–39.
Zheng X, Wise SM, Cristini V. Nonlinear simulation of tumor necrosis, neo-vascularization and tissue invasion via an adaptive finite-element/level-set method. Bull Math Biol. 2005;67(2):211–59.
Withers HR. The four R’s of radiotherapy. Advances in radiation biology, vol. 5. Elsevier; 1975. p. 241–71.
Steel GG, McMillan TJ, Peacock J. The 5Rs of radiobiology. Int J Radiat Biol. 1989;56(6):1045–8.
van Leeuwen CM, Oei AL, Crezee J, Bel A, Franken NAP, Stalpers LJA, et al. The alfa and beta of tumours: a review of parameters of the linear-quadratic model, derived from clinical radiotherapy studies. Radiat Oncol. 2018;13(1):96.
PubMed PubMed Central Google Scholar
Kirkpatrick JP, Meyer JJ, Marks LB. The linear-quadratic model is inappropriate to model high dose per fraction effects in radiosurgery. Semin Radiat Oncol. 2008;18(4):240–3.
Brown JM, Carlson DJ, Brenner DJ. The tumor radiobiology of SRS and SBRT: are more than the 5 Rs involved? Int J Radiat Oncol Biol Phys. 2014;88(2):254–62.
PubMed PubMed Central Google Scholar
Kirkpatrick JP, Brenner DJ, Orton CG. Point/Counterpoint. The linear-quadratic model is inappropriate to model high dose per fraction effects in radiosurgery. Med Phys. 2009;36(8):3381–4.
Comments (0)