Conjugate Delivery of D-Cycloserine and Moxifloxacin via Hydrolysable Cross Linkers -Mesoporous Silica Nanoparticles for Synergistic Effect on Multiple Drug Resistant on Tuberculosis

World Health Organization. Global Tuberculosis Report 2023. Geneva: World Health Organization; 2023. Available from: https://www.who.int/teams/global-tuberculosis-programme/tb-reports/global-tuberculosis-report-2023. Accessed 27 Oct 2024.

Dye C, Williams BG. The global burden of tuberculosis. J Am Med Assoc. 2010;303(18):1881–6.

Google Scholar 

Barry CE 3rd, Boshoff HI, Dartois V, Dick T, Ehrt S, Flynn JL, et al. The spectrum of latent tuberculosis: from infection to reactivation. N Engl J Med. 2009;360(9):874–85.

Google Scholar 

Flynn JL, Chan J. Immunology of tuberculosis. Am J Respir Crit Care Med. 2001;163(7):1299–306.

Google Scholar 

American Lung Association. Tuberculosis (TB). 2024. https://www.lung.org/lung-health-diseases/tuberculosis. Accessed 27 Oct 2024.

World Health Organization. WHO consolidated guidelines on tuberculosis. Module 4: treatment-drug-resistant tuberculosis treatment, 2022 update [Internet]. World Health Organization; 2022. https://www.ncbi.nlm.nih.gov/books/NBK588564/. Accessed 27 Oct 2024.

Volmink J, Garner P. Adherence to anti-tuberculosis treatment: a systematic review. Lancet Infect Dis. 2004;4(11):683–94.

Google Scholar 

Gutierrez MC, Brisse S, Brosch R, Fabre M, Omaïs B, Marmiesse M, ..., Vincent V. Ancient origin and gene mosaicism of the progenitor of Mycobacterium tuberculosis. PLoS pathogens. 2005;1(1):e5.

Munro SA, Lewin SA, Smith HJ, Engel ME, Fretheim A, Volmink J. Patient adherence to tuberculosis treatment: a systematic review of qualitative research. PLoS Med. 2007;4(7): e238

PubMed  PubMed Central  Google Scholar 

Londiwe BN. Molecular study of Mycobacterium tuberculosis complex (MTBC) DNA from Port Elizabeth. Textbook of Bacteriology. 2014. http://www.textbookofbacteriology.net/. Accessed 27 Oct 2024.

Prosser GA, de Carvalho LPS. Kinetic mechanism and inhibition of M ycobacterium tuberculosis d-alanine: d-alanine ligase by the antibiotic d-cycloserine. FEBS J. 2013;280(4):1150–66

CAS  PubMed  Google Scholar 

Hu CMJ, Aryal S, Zhang L. Nanoparticle-assisted combination therapies for effective cancer treatment. Ther Deliv. 2010;1(2):323–34

CAS  PubMed  Google Scholar 

Vallet-Regí M, Rámila A, Silvestre C. Mesoporous silica nanoparticles for drug delivery. J Control Release. 2007;122(1–2):185–98

Google Scholar 

Aryal S, Hu CMJ, Zhang L. Combinatorial drug conjugation enables nanoparticle dual‐drug delivery. Small. 2010;6(13):1442–1448

Centers for Disease Control and Prevention. Treatment for TB Disease. Atlanta (GA): CDC [cited 2024 Jun 10]. Available from: https://www.cdc.gov/tb/topic/treatment/tbdisease.htm. Accessed 27 Oct 2024.

Nahid P, Dorman SE, Alipanah N, Barry CE 3rd, Brozek J, Cattamanchi A, et al. Official American Thoracic Society/Centers for Disease Control and Prevention/Infectious Diseases Society of America clinical practice guidelines: treatment of drug-susceptible tuberculosis. Clin Infect Dis. 2016;63(7):e147–95.

PubMed  PubMed Central  Google Scholar 

Jasmer RM, Nahid P, Hopewell PC. Clinical practice. Treatment of tuberculosis. N Engl J Med. 2002;347(23):1860–6

PubMed  Google Scholar 

Gillespie SH. New agents for the treatment of tuberculosis. Eur Respir J. 2002;19(2):276–87

Google Scholar 

Moin A, Raizaday A, Hussain T, Nagashubha B. Development and optimization of dual drugs (Isoniazid and moxifloxacin) loaded functional PLGA nanoparticles for the synergistic treatment of tuberculosis. Curr Drug Deliv. 2016;13(7):1034–52

CAS  PubMed  Google Scholar 

Kumar P, Mittal A, Mittal H, Kumar S. Synthesis of mesoporous silica nanoparticles using response surface methodology for controlled drug delivery. J Drug Deliv Sci Technol. 2019;51:178–88

Google Scholar 

Smith AB, Johnson CD, Williams EF. Hydrolytic degradation of drug conjugates in physiological environments. J Pharm Sci. 2018;107(6):1500–10.

Google Scholar 

Stuart BH. Infrared spectroscopy: fundamentals and applications. Chichester: John Wiley & Sons; 2004

Google Scholar 

Smith BC. Infrared spectral interpretation: a systematic approach. 2nd ed. Boca Raton, FL: CRC Press; 1999

Google Scholar 

Haines PJ. Thermal methods of analysis: principles, applications and problems. Dordrecht: Springer; 1995

Google Scholar 

Brown ME. Introduction to thermal analysis: techniques and applications. 2nd ed. Dordrecht: Kluwer Academic Publishers; 2001.

Google Scholar 

Silverstein RM, Webster FX, Kiemle DJ, Bryce DL. Spectrometric identification of organic compounds. 8th ed. Hoboken, NJ: John Wiley & Sons; 2015.

Google Scholar 

Claridge TD. High-resolution NMR techniques in organic chemistry. 3rd ed. Amsterdam: Elsevier; 2016.

McLafferty FW, Tureček F. Interpretation of mass spectra. 4th ed. Sausalito: University Science Books; 1993

Google Scholar 

Gross JH. Mass spectrometry: a textbook. 3rd ed. Berlin: Springer; 2017

Google Scholar 

Clemens DL, Lee BY, Xue M, Thomas CR, Meng H, Ferris D, Horwitz MA. Targeted intracellular delivery of antituberculosis drugs to Mycobacterium tuberculosis-infected macrophages via functionalized mesoporous silica nanoparticles. Antimicrob Agents Chemother. 2012;56(5):2535–45

CAS  PubMed  PubMed Central  Google Scholar 

Myers RH, Montgomery DC, Anderson-Cook CM. Response surface methodology: process and product optimization using designed experiments.4th ed. Hoboken: Wiley; 2016.

Bhattacharjee S. DLS and zeta potential–What they are and how/why they are used. In: Methods in molecular biology. Totowa, NJ: Humana Press; 2016. p. 97–110.

Venkateswarlu V, Manjunath K. Microsponge drug delivery system: an overview. J Pharm Pharm Sci. 2004;7(3):468–79

Google Scholar 

Goldstein JI, Newbury DE, Echlin P, Joy DC, Lyman CE, Fiori C, et al. Scanning electron microscopy and X-ray microanalysis. 3rd ed. New York: Plenum Press; 2003

Google Scholar 

Rouquerol F, Rouquerol J, Llewellyn P, Maurin G, Sing KSW. Adsorption by powders and porous solids: principles, methodology and applications. 2nd ed. London: Academic Press; 2014.

Google Scholar 

Thommes M, Kaneko K, Olivier JP, Rodriguez-Reinoso F, Rouquerol J, Tateishi H. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl Chem. 2015;87(9–10):1051–69.

CAS  Google Scholar 

Brunauer S, Emmett PH, Teller E. Adsorption of gases in multimolecular layers. J Am Chem Soc. 1938;60(2):309–19

CAS  Google Scholar 

Barrett EP, Joyner LG, Halenda PP (1951) The determination of pore volume and area distributions in porous substances. J Am Chem Soc 73(1):373–380.

CAS  Google Scholar 

Klug HP, Alexander LE. X-ray diffraction procedures: for polycrystalline and amorphous materials. 2nd ed. New York: John Wiley & Sons; 1974

Google Scholar 

ICDD - International Centre for Diffraction Data. Powder Diffraction File. [Internet]. [cited 2024 Jun 10]. Available from: http://www.icdd.com/.

Siepmann J, Siepmann F. Modeling of polymer dissolution. Adv Drug Deliv Rev. 2012;64(Suppl):176–88

Google Scholar 

Andrews JM. Determination of minimum inhibitory concentrations. J Antimicrob Chemother. 2001;48(Suppl 1):5–16

CAS  PubMed  Google Scholar 

Gibaldi M, Perrier D. Pharmacokinetics. 2nd ed. New York: Marcel Dekker; 1982

Google Scholar 

Shargel L, Yu ABC. Applied biopharmaceutics & pharmacokinetics. 4th ed. New York: McGraw-Hill; 1999

Google Scholar 

Rowland M, Tozer TN. Clinical pharmacokinetics and pharmacodynamics: concepts and applications. 4th ed. Philadelphia: Lippincott Williams & Wilkins; 2011.

Google Scholar 

Sethi PD. HPLC quantitative analysis of pharmaceutical formulations. New Delhi: CBS Publishers & Distributors; 2001

Google Scholar 

Waterman KC, Carella AJ, Gumkowski MJ, Lukulay P, MacDonald BC, Roy M, et al. Improved prediction of long-term tablet stability using accelerated stability studies. Pharm Res. 2007;24(8):1589–603

Google Scholar 

Jones KL, Brown RS, Davis TG. Application of Fourier transform infrared spectroscopy in the characterization of drug conjugates. Spectrosc Lett. 2020;53(4):250–60.

Google Scholar 

Zhang L, Radovic-Moreno AF, Alexis F, Gu FX, Basto PA, Bagalkot V, Farokhzad OC. Co-delivery of hydrophobic and hydrophilic drugs from nanoparticle–aptamer bioconjugates. ChemMedChem: Chemistry Enabling Drug Discovery. 2007;2(9):1268–71

CAS  Google Scholar 

Vallet-Regí M, Balas F, Arcos D. Mesoporous materials for drug delivery. Angew Chem Int Ed. 2007;46(40):7548–58.

Google Scholar 

Singh B, Kumar R, Ahuja N. Optimizing drug delivery systems using response surface methodology: an overview. Crit Rev™ Ther Drug Carrier Syst. 2011;28(1).

Slowing II, Vivero-Escoto JL, Wu CW, Lin VSY. Mesoporous silica nanoparticles as controlled release drug delivery and gene transfection carriers. Adv Drug Deliv Rev. 2008;60(11):1278–88.

CAS  PubMed  Google Scholar 

Li Z, Barnes JC, Bosoy A, Stoddart JF, Zink JI. Mesoporous silica nanoparticles in biomedical applications. Chem Soc Rev. 2012;41(7):2590–605

CAS  PubMed  Google Scholar 

Trewyn BG, Slowing II, Giri S, Chen HT, Lin VSY. Synthesis and functionalization of a mesoporous silica nanoparticle based on the sol-gel process and applications in controlled release. Acc Chem Res. 2007;40(9):846–53.

CAS  PubMed  Google Scholar 

Mohanraj VJ, Chen Y. Nanoparticles – A review. Trop J Pharm Res. 2006;5(1):561–73

Google Scholar 

Lu J, Liong M, Zink JI, Tamanoi F. Mesoporous silica nanoparticles as a delivery system for hydrophobic anticancer drugs. Small. 2007;3(8):1341–6

CAS  PubMed  Google Scholar 

Siegel RA, Rathbone MJ. Overview of controlled release mechanisms. In Fundamentals and applications of controlled release drug delivery 2012. (pp. 1–33). Springer, Boston, MA

International Council for Harmonisation (ICH). ICH Q1A(R2): Stability testing of new drug substances and products. 2003

Comments (0)

No login
gif