Monocyte-related markers as predictors of immune checkpoint inhibitor efficacy and immune-related adverse events: a systematic review and meta-analysis

Shiravand, Y., Khodadadi, F., Kashani, S. M. A., Hosseini-Fard, S. R., Hosseini, S., Sadeghirad, H., et al. (2022). Immune checkpoint inhibitors in cancer therapy. Current Oncology, 29(5), 3044–3060. https://doi.org/10.3390/curroncol29050247

Lee, J. B., Kim, H. R., Ha, S. J. (2022). Immune checkpoint inhibitors in 10 years: Contribution of basic research and clinical application in cancer immunotherapy. 22(1), e2. https://doi.org/10.4110/in.2022.22.e2

Marin-Acevedo, J. A., Kimbrough, E. M. O., Lou, Y. (2021). Next generation of immune checkpoint inhibitors and beyond. Journal of Hematology & Oncology, 14(1), 45. https://doi.org/10.1186/s13045-021-01056-8

Peranzoni, E., Ingangi, V., Masetto, E., Pinton, L., & Marigo, I. (2020). Myeloid cells as clinical biomarkers for immune checkpoint blockade. Frontiers in Immunology, 24(11), 1590. https://doi.org/10.3389/fimmu.2020.01590

Liu, X., Hogg, G. D., & Denardo, D. G. (2021). Rethinking immune checkpoint blockade: ‘Beyond the T cell.’ Journal for Immunotherapy of Cancer, 9(1), e001460. https://doi.org/10.1136/jitc-2020-001460

Van Coillie, S., Wiernicki, B., & Xu, J. (2020). Molecular and cellular functions of CTLA-4. Advances in Experimental Medicine and Biology, 1248, 7–32. https://doi.org/10.1007/978-981-15-3266-5_2

Ai, L., Xu, A., & Xu, J. (2020). Roles of PD-1/PD-L1 pathway: Signaling, cancer, and beyond. Advances in Experimental Medicine and Biology, 1248, 33–59. https://doi.org/10.1007/978-981-15-3266-5_3

Seidel, J. A., Otsuka, A., & Kabashima, K. (2018). Anti-PD-1 and Anti-CTLA-4 therapies in cancer: Mechanisms of action, efficacy, and limitations. Frontiers in Oncology, 28(8), 86. https://doi.org/10.3389/fonc.2018.00086

Bar, N., Costa, F., Das, R., Duffy, A., Samur, M., McCachren, S., et al. (2020). Differential effects of PD-L1 versus PD-1 blockade on myeloid inflammation in human cancer. JCI Insight., 5(12), e129353. https://doi.org/10.1172/jci.insight.129353

Fan, Y., Xie, W., Huang, H., Wang, Y., Li, G., Geng, Y., et al. (2021). Association of immune related adverse events with efficacy of immune checkpoint inhibitors and overall survival in cancers: A systemic review and meta-analysis. Frontiers in Oncology, 12(11), 633032. https://doi.org/10.3389/fonc.2021.633032

Martins, F., Sofiya, L., Sykiotis, G. P., Lamine, F., Maillard, M., Fraga, M., et al. (2019). Adverse effects of immune-checkpoint inhibitors: Epidemiology, management and surveillance. Nature Reviews Clinical Oncology, 16(9), 563–580. https://doi.org/10.1038/s41571-019-0218-0

Brahmer, J. R., Abu-Sbeih, H., Ascierto, P. A., Brufsky, J., Cappelli, L. C., Cortazar, F. B., et al. (2021). Society for Immunotherapy of Cancer (SITC) clinical practice guideline on immune checkpoint inhibitor-related adverse events. Journal for Immunotherapy of Cancer, 9(6), e002435. https://doi.org/10.1136/jitc-2021-002435

Article  PubMed  PubMed Central  Google Scholar 

Rosellini, M., Marchetti, A., Mollica, V., Rizzo, A., Santoni, M., & Massari, F. (2023). Prognostic and predictive biomarkers for immunotherapy in advanced renal cell carcinoma. Nature Reviews Urology, 20(3), 133–157. https://doi.org/10.1038/s41585-022-00676-0

Article  CAS  PubMed  Google Scholar 

Olingy, C. E., Dinh, H. Q., Hedrick, C. C. (2019). Monocyte heterogeneity and functions in cancer. Journal of Leukocyte Biology, 106(2), 309–322. https://doi.org/10.1002/JLB.4RI0818-311R .

Krieg, C., Nowicka, M., Guglietta, S., Schindler, S., Hartmann, F. J., Weber, L. M., et al. (2018). High-dimensional single-cell analysis predicts response to anti-PD-1 immunotherapy. Nature Medicine, 24(2), 144–153. https://doi.org/10.1038/nm.4466

Article  CAS  PubMed  Google Scholar 

Olingy, C., Alimadadi, A., Araujo, D. J., Barry, D., Gutierrez, N. A., Werbin, M. H., et al. (2022). CD33 expression on peripheral blood monocytes predicts efficacy of anti-PD-1 immunotherapy against non-small cell lung cancer. Frontiers in Immunology, 13, 842653. https://doi.org/10.1038/nm.4466

Article  CAS  PubMed  PubMed Central  Google Scholar 

Laza-Briviesca, R., Cruz-Bermúdez, A., Nadal, E., Insa, A., García-Campelo, M. D. R., Huidobro, G., et al. (2021). Blood biomarkers associated to complete pathological response on NSCLC patients treated with neoadjuvant chemoimmunotherapy included in NADIM clinical trial. Clinical and Translational Medicine, 11(7), e491. https://doi.org/10.1038/nm.4466

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rana, A. K., Li, Y., Dang, Q., & Yang, F. (2018). Monocytes in rheumatoid arthritis: Circulating precursors of macrophages and osteoclasts and their heterogeneity and plasticity role in RA pathogenesis. International Immunopharmacology, 1(65), 348–359. https://doi.org/10.1016/j.intimp.2018.10.016

Article  CAS  Google Scholar 

Araújo, F. C., & Afonso, P. D. (2022). Sacroiliitis as an immune-related adverse event of pembrolizumb treatment for melanoma. Scandinavian Journal of Rheumatology, 51(4), 342–343. https://doi.org/10.1080/03009742.2022.2053301

Article  CAS  PubMed  Google Scholar 

Sørensen, A. S., Andersen, M. N., Juul-Madsen, K., Broksø, A. D., Skejø, C., Schmidt, H., et al. (2022). Tumor necrosis factor alpha neutralization attenuates immune checkpoint inhibitor-induced activation of intermediate monocytes in synovial fluid mononuclear cells from patients with inflammatory arthritis. Arthritis Research & Therapy, 24(1), 43. https://doi.org/10.1186/s13075-022-02737-6

Article  CAS  Google Scholar 

Xiao, L., Wang, Q., & Peng, H. (2023). Tumor-associated macrophages: New insights on their metabolic regulation and their influence in cancer immunotherapy. Frontiers in Immunology, 22(14), 1157291. https://doi.org/10.3389/fimmu.2023.1157291

Article  CAS  Google Scholar 

Hebert, A. E., Kreaden, U. S., Yankovsky, A., Guo, D., Li, Y., Lee, S. H., et al. (2022). Methodology to standardize heterogeneous statistical data presentations for combining time-to-event oncologic outcomes. PLoS ONE, 17(2), e0263661. https://doi.org/10.1371/journal.pone.0263661

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hozo, S. P., Djulbegovic, B., & Hozo, I. (2005). Estimating the mean and variance from the median, range, and the size of a sample. BMC Medical Research Methodology, 5(1), 13. https://doi.org/10.1186/1471-2288-5-13

Article  PubMed  PubMed Central  Google Scholar 

Sterne, J. A., Hernán, M. A., Reeves, B. C., Savović, J., Berkman, N. D., Viswanathan, M., et al. (2016). ROBINS-I: A tool for assessing risk of bias in non-randomized studies of interventions. BMJ, 12(355), i4919. https://doi.org/10.1136/bmj.i4919

Article  Google Scholar 

Guyatt, G. H., Oxman, A. D., Vist, G. E., Kunz, R., Falck-Ytter, Y., Alonso-Coello, P., et al. (2008). Rating quality of evidence and strength of recommendations: GRADE: An emerging consensus on rating quality of evidence and strength of recommendations. BMJ Br Med J., 336(7650), 924. https://doi.org/10.1136/bmj.39489.470347.AD

Article  Google Scholar 

Afzal, M. Z., Sarwar, T., & Shirai, K. (2019). Prognostic significance of hematological indices in malignant melanoma treated with immune checkpoint inhibitors. Journal of Immunotherapy, 42(7), 251–264. https://doi.org/10.1097/CJI.0000000000000271

Article  CAS  PubMed  Google Scholar 

Bai, X., Dai, J., Li, C., Cui, C., Mao, L., Wei, X., et al. (2021). Risk models for advanced melanoma patients under anti-PD-1 monotherapy—Ad hoc analyses of pooled data from two clinical trials. Frontiers in Oncology, 11, 639085. https://doi.org/10.3389/fonc.2021.639085

Article  CAS  PubMed  PubMed Central  Google Scholar 

Li, Y., Wang, K., Zhao, E., Li, B., Li, S., Dong, X., et al. (2022). Prognostic value of lactate dehydrogenase in second-line immunotherapy for advanced esophageal squamous cell carcinoma. Pathology Oncology Research, 28, 1610245. https://doi.org/10.3389/pore.2021.1610245

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chasseuil, E., Saint-Jean, M., Chasseuil, H., Peuvrel, L., Quéreux, G., Nguyen, J. M. et al. (2018). Blood predictive biomarkers for nivolumab in advanced melanoma. Acta Dermato-Venereologica, 98(4), 406–10:e14566. https://doi.org/10.2340/00015555-2895

Chen, X., Li, Z., Zhou, J., Wei, Q., Wang, X., & Jiang, R. (2022). Identification of prognostic factors and nomogram model for patients with advanced lung cancer receiving immune checkpoint inhibitors. PeerJ, 15(10), e14566. https://doi.org/10.7717/peerj.14566

Article  CAS  Google Scholar 

Bai, R., Li, L., Chen, X., Chen, N., Song, W., Zhang, Y. et al. (2021). Correlation of peripheral blood parameters and immune-related adverse events with the efficacy of immune checkpoint inhibitors. Journal of Clinical Oncology, 2021:9935076. https://doi.org/10.1155/2021/9935076

Martens, A., Wistuba-Hamprecht, K., Geukes Foppen, M., Yuan, J., Postow, M. A., Wong, P., et al. (2016). Baseline peripheral blood biomarkers associated with clinical outcome of advanced melanoma patients treated with Ipilimumab. Clinical Cancer Research, 22(12), 2908–2918. https://doi.org/10.1158/1078-0432.CCR-15-2412

Article  CAS  PubMed  PubMed Central  Google Scholar 

Okuhira, H., Yamamoto, Y., Inaba, Y., Kunimoto, K., Mikita, N., Ikeda, T., et al. (2018). Prognostic factors of daily blood examination for advanced melanoma patients treated with nivolumab. Bioscience Trends, 12(4), 412–418. https://doi.org/10.5582/bst.2018.01158

Article  CAS  PubMed  Google Scholar 

Parikh, K., Kumar, A., Ahmed, J., Anwar, A., Puccio, C., Chun, H., et al. (2018). Peripheral monocytes and neutrophils predict response to immune checkpoint inhibitors in patients with metastatic non-small cell lung cancer. Cancer Immunology, Immunotherapy, 67(9), 1365–1370. https://doi.org/10.1007/s00262-018-2192-2

Article  CAS  PubMed  PubMed Central  Google Scholar 

Pu, D., Xu, Q., Zhou, L. Y., Zhou, Y. W., Liu, J. Y., & Ma, X. L. (2021). Inflammation-nutritional markers of peripheral blood could predict survival in advanced non-small-cell lung cancer patients treated with PD-1 inhibitors. Thoracic Cancer., 12(21), 2914–2923. https://doi.org/10.1111/1759-7714.14152

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ribas, A., Shin, D. S., Zaretsky, J., Frederiksen, J., Cornish, A., Avramis, E., et al. (2016). PD-1 blockade expands intratumoral memory T cells. Cancer Immunology Research, 4(3), 194–203. https://doi.org/10.1158/2326-6066.CIR-15-0210

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rosner, S., Kwong, E., Shoushtari, A. N., Friedman, C. F., Betof, A. S., Brady, M. S., et al. (2018). Peripheral blood clinical laboratory variables associated with outcomes following combination nivolumab and ipilimumab immunotherapy in melanoma. Cancer Medicine, 7(3), 690–697. https://doi.org/10.1002/cam4.1356

Article  CAS  PubMed  PubMed Central  Google Scholar 

Menekse, S., Kut, E., Almuradova, E. (2023). Elevated serum lactate dehydrogenase to albumin ratio is a useful poor prognostic predictor of nivolumab in patients with non-small cell lung cancer. European Review for Medical and Pharmacological Sciences, 27(5), 86–94. https://doi.org/10.26355/eurrev_202310_34076.

Shao, Y., Lin, S., Zhang, P., Zhang, J., Ji, D., Tao, Z. et al. (2021). Baseline monocyte and its classical subtype may predict efficacy of PD-1/PD-L1 inhibitor in cancers. Bioscience Reports, 41(1), BSR20202613. 10.1042/BSR20202613

Comments (0)

No login
gif