Ferroptosis: iron release mechanisms in the bioenergetic process

Frey, P. A., & Reed, G. H. (2012). The ubiquity of iron. ACS Chemical Biology, 7(9), 1477–1481. https://doi.org/10.1021/cb300323q

Article  CAS  PubMed  Google Scholar 

Sheftel, A. D., Mason, A. B., & Ponka, P. (2012). The long history of iron in the Universe and in health and disease. Biochimica et Biophysica Acta, 1820(3), 161–187. https://doi.org/10.1016/j.bbagen.2011.08.002

Article  CAS  PubMed  Google Scholar 

Behera, N., Bhattacharyya, G., Behera, S., & Behera, R. K. (2024). Iron mobilization from intact ferritin: Effect of differential redox activity of quinone derivatives with NADH/O(2) and in situ-generated ROS. JBIC Journal of Biological Inorganic Chemistry, 29(4), 455–475. https://doi.org/10.1007/s00775-024-02058-w

Article  CAS  PubMed  Google Scholar 

Yang, W. S., & Stockwell, B. R. (2008). Synthetic lethal screening identifies compounds activating iron-dependent, nonapoptotic cell death in oncogenic-RAS-harboring cancer cells. Chemistry & Biology, 15(3), 234–245. https://doi.org/10.1016/j.chembiol.2008.02.010

Article  CAS  Google Scholar 

Dixon, S. J., Lemberg, K. M., Lamprecht, M. R., Skouta, R., Zaitsev, E. M., Gleason, C. E., et al. (2012). Ferroptosis: An iron-dependent form of nonapoptotic cell death. Cell, 149(5), 1060–1072. https://doi.org/10.1016/j.cell.2012.03.042

Article  CAS  PubMed  PubMed Central  Google Scholar 

Winterbourn, C. C. (1995). Toxicity of iron and hydrogen peroxide: The Fenton reaction. Toxicology Letters, 82–83, 969–974. https://doi.org/10.1016/0378-4274(95)03532-x

Article  PubMed  Google Scholar 

Yang, W. S., Kim, K. J., Gaschler, M. M., Patel, M., Shchepinov, M. S., & Stockwell, B. R. (2016). Peroxidation of polyunsaturated fatty acids by lipoxygenases drives ferroptosis. Proc Natl Acad Sci U S A, 113(34), E4966-4975. https://doi.org/10.1073/pnas.1603244113

Article  CAS  PubMed  PubMed Central  Google Scholar 

Shah, R., Shchepinov, M. S., & Pratt, D. A. (2018). Resolving the role of lipoxygenases in the initiation and execution of ferroptosis. ACS Central Science, 4(3), 387–396. https://doi.org/10.1021/acscentsci.7b00589

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yang, W. S., SriRamaratnam, R., Welsch, M. E., Shimada, K., Skouta, R., Viswanathan, V. S., et al. (2014). Regulation of ferroptotic cancer cell death by GPX4. Cell, 156(1–2), 317–331. https://doi.org/10.1016/j.cell.2013.12.010

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mishima, E., Ito, J., Wu, Z., Nakamura, T., Wahida, A., Doll, S., et al. (2022). A non-canonical vitamin K cycle is a potent ferroptosis suppressor. Nature, 608(7924), 778–783. https://doi.org/10.1038/s41586-022-05022-3

Article  CAS  PubMed  PubMed Central  Google Scholar 

Doll, S., Freitas, F. P., Shah, R., Aldrovandi, M., da Silva, M. C., Ingold, I., et al. (2019). FSP1 is a glutathione-independent ferroptosis suppressor. Nature, 575(7784), 693–698. https://doi.org/10.1038/s41586-019-1707-0

Article  CAS  PubMed  Google Scholar 

Sohal, R. S., & Weindruch, R. (1996). Oxidative stress, caloric restriction, and aging. Science, 273(5271), 59–63. https://doi.org/10.1126/science.273.5271.59

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kraft, V. A. N., Bezjian, C. T., Pfeiffer, S., Ringelstetter, L., Muller, C., Zandkarimi, F., et al. (2020). GTP cyclohydrolase 1/tetrahydrobiopterin counteract ferroptosis through lipid remodeling. ACS Central Science, 6(1), 41–53. https://doi.org/10.1021/acscentsci.9b01063

Article  CAS  PubMed  Google Scholar 

Friedmann Angeli, J. P., Krysko, D. V., & Conrad, M. (2019). Ferroptosis at the crossroads of cancer-acquired drug resistance and immune evasion. Nature Reviews Cancer, 19(7), 405–414. https://doi.org/10.1038/s41568-019-0149-1

Article  CAS  PubMed  Google Scholar 

Mao, C., Liu, X., Zhang, Y., Lei, G., Yan, Y., Lee, H., et al. (2021). DHODH-mediated ferroptosis defence is a targetable vulnerability in cancer. Nature, 593(7860), 586–590. https://doi.org/10.1038/s41586-021-03539-7

Article  CAS  PubMed  PubMed Central  Google Scholar 

Freitas, F. P., Alborzinia, H., Dos Santos, A. F., Nepachalovich, P., Pedrera, L., Zilka, O., et al. (2024). 7-Dehydrocholesterol is an endogenous suppressor of ferroptosis. Nature, 626(7998), 401–410. https://doi.org/10.1038/s41586-023-06878-9

Article  CAS  PubMed  Google Scholar 

Li, Y., Ran, Q., Duan, Q., Jin, J., Wang, Y., Yu, L., et al. (2024). 7-Dehydrocholesterol dictates ferroptosis sensitivity. Nature, 626(7998), 411–418. https://doi.org/10.1038/s41586-023-06983-9

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lee, H., Zandkarimi, F., Zhang, Y., Meena, J. K., Kim, J., Zhuang, L., et al. (2020). Energy-stress-mediated AMPK activation inhibits ferroptosis. Nature Cell Biology, 22(2), 225–234. https://doi.org/10.1038/s41556-020-0461-8

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gao, M., Yi, J., Zhu, J., Minikes, A. M., Monian, P., Thompson, C. B., et al. (2019). Role of mitochondria in ferroptosis. Mol Cell, 73(2), 354-363 e353. https://doi.org/10.1016/j.molcel.2018.10.042

Article  CAS  PubMed  Google Scholar 

Mao, C., Lei, G., Horbath, A., Wang, M., Lu, Z., Yan, Y., et al. (2024). Unraveling ETC complex I function in ferroptosis reveals a potential ferroptosis-inducing therapeutic strategy for LKB1-deficient cancers. Mol Cell, 84(10), 1964-1979 e1966. https://doi.org/10.1016/j.molcel.2024.04.009

Article  CAS  PubMed  Google Scholar 

You, J. H., Lee, J., & Roh, J. L. (2021). PGRMC1-dependent lipophagy promotes ferroptosis in paclitaxel-tolerant persister cancer cells. Journal of Experimental & Clinical Cancer Research, 40(1), 350. https://doi.org/10.1186/s13046-021-02168-2

Article  CAS  Google Scholar 

Shin, D., Lee, J., You, J. H., Kim, D., & Roh, J. L. (2020). Dihydrolipoamide dehydrogenase regulates cystine deprivation-induced ferroptosis in head and neck cancer. Redox Biology, 30, 101418. https://doi.org/10.1016/j.redox.2019.101418

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mancias, J. D., Pontano Vaites, L., Nissim, S., Biancur, D. E., Kim, A. J., Wang, X., et al. (2015). Ferritinophagy via NCOA4 is required for erythropoiesis and is regulated by iron dependent HERC2-mediated proteolysis. Elife, 4, e10308. https://doi.org/10.7554/eLife.10308

Wu, H., Liu, Q., Shan, X., Gao, W., & Chen, Q. (2023). ATM orchestrates ferritinophagy and ferroptosis by phosphorylating NCOA4. Autophagy, 19(7), 2062–2077. https://doi.org/10.1080/15548627.2023.2170960

Article  CAS  PubMed  PubMed Central  Google Scholar 

Li, K., Chen, B., Xu, A., Shen, J., Li, K., Hao, K., et al. (2022). TRIM7 modulates NCOA4-mediated ferritinophagy and ferroptosis in glioblastoma cells. Redox Biology, 56, 102451. https://doi.org/10.1016/j.redox.2022.102451

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fuhrmann, D. C., Mondorf, A., Beifuss, J., Jung, M., & Brune, B. (2020). Hypoxia inhibits ferritinophagy, increases mitochondrial ferritin, and protects from ferroptosis. Redox Biology, 36, 101670. https://doi.org/10.1016/j.redox.2020.101670

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wang, X., Xu, L., Meng, Y., Chen, F., Zhuang, J., Wang, M., et al. (2024). FOXO1-NCOA4 axis contributes to cisplatin-induced cochlea spiral ganglion neuron ferroptosis via ferritinophagy. Adv Sci (Weinh), 11(40), e2402671. https://doi.org/10.1002/advs.202402671

Lee, J., You, J. H., & Roh, J. L. (2022). Poly(rC)-binding protein 1 represses ferritinophagy-mediated ferroptosis in head and neck cancer. Redox Biology, 51, 102276. https://doi.org/10.1016/j.redox.2022.102276

Comments (0)

No login
gif