Frey, P. A., & Reed, G. H. (2012). The ubiquity of iron. ACS Chemical Biology, 7(9), 1477–1481. https://doi.org/10.1021/cb300323q
Article CAS PubMed Google Scholar
Sheftel, A. D., Mason, A. B., & Ponka, P. (2012). The long history of iron in the Universe and in health and disease. Biochimica et Biophysica Acta, 1820(3), 161–187. https://doi.org/10.1016/j.bbagen.2011.08.002
Article CAS PubMed Google Scholar
Behera, N., Bhattacharyya, G., Behera, S., & Behera, R. K. (2024). Iron mobilization from intact ferritin: Effect of differential redox activity of quinone derivatives with NADH/O(2) and in situ-generated ROS. JBIC Journal of Biological Inorganic Chemistry, 29(4), 455–475. https://doi.org/10.1007/s00775-024-02058-w
Article CAS PubMed Google Scholar
Yang, W. S., & Stockwell, B. R. (2008). Synthetic lethal screening identifies compounds activating iron-dependent, nonapoptotic cell death in oncogenic-RAS-harboring cancer cells. Chemistry & Biology, 15(3), 234–245. https://doi.org/10.1016/j.chembiol.2008.02.010
Dixon, S. J., Lemberg, K. M., Lamprecht, M. R., Skouta, R., Zaitsev, E. M., Gleason, C. E., et al. (2012). Ferroptosis: An iron-dependent form of nonapoptotic cell death. Cell, 149(5), 1060–1072. https://doi.org/10.1016/j.cell.2012.03.042
Article CAS PubMed PubMed Central Google Scholar
Winterbourn, C. C. (1995). Toxicity of iron and hydrogen peroxide: The Fenton reaction. Toxicology Letters, 82–83, 969–974. https://doi.org/10.1016/0378-4274(95)03532-x
Yang, W. S., Kim, K. J., Gaschler, M. M., Patel, M., Shchepinov, M. S., & Stockwell, B. R. (2016). Peroxidation of polyunsaturated fatty acids by lipoxygenases drives ferroptosis. Proc Natl Acad Sci U S A, 113(34), E4966-4975. https://doi.org/10.1073/pnas.1603244113
Article CAS PubMed PubMed Central Google Scholar
Shah, R., Shchepinov, M. S., & Pratt, D. A. (2018). Resolving the role of lipoxygenases in the initiation and execution of ferroptosis. ACS Central Science, 4(3), 387–396. https://doi.org/10.1021/acscentsci.7b00589
Article CAS PubMed PubMed Central Google Scholar
Yang, W. S., SriRamaratnam, R., Welsch, M. E., Shimada, K., Skouta, R., Viswanathan, V. S., et al. (2014). Regulation of ferroptotic cancer cell death by GPX4. Cell, 156(1–2), 317–331. https://doi.org/10.1016/j.cell.2013.12.010
Article CAS PubMed PubMed Central Google Scholar
Mishima, E., Ito, J., Wu, Z., Nakamura, T., Wahida, A., Doll, S., et al. (2022). A non-canonical vitamin K cycle is a potent ferroptosis suppressor. Nature, 608(7924), 778–783. https://doi.org/10.1038/s41586-022-05022-3
Article CAS PubMed PubMed Central Google Scholar
Doll, S., Freitas, F. P., Shah, R., Aldrovandi, M., da Silva, M. C., Ingold, I., et al. (2019). FSP1 is a glutathione-independent ferroptosis suppressor. Nature, 575(7784), 693–698. https://doi.org/10.1038/s41586-019-1707-0
Article CAS PubMed Google Scholar
Sohal, R. S., & Weindruch, R. (1996). Oxidative stress, caloric restriction, and aging. Science, 273(5271), 59–63. https://doi.org/10.1126/science.273.5271.59
Article CAS PubMed PubMed Central Google Scholar
Kraft, V. A. N., Bezjian, C. T., Pfeiffer, S., Ringelstetter, L., Muller, C., Zandkarimi, F., et al. (2020). GTP cyclohydrolase 1/tetrahydrobiopterin counteract ferroptosis through lipid remodeling. ACS Central Science, 6(1), 41–53. https://doi.org/10.1021/acscentsci.9b01063
Article CAS PubMed Google Scholar
Friedmann Angeli, J. P., Krysko, D. V., & Conrad, M. (2019). Ferroptosis at the crossroads of cancer-acquired drug resistance and immune evasion. Nature Reviews Cancer, 19(7), 405–414. https://doi.org/10.1038/s41568-019-0149-1
Article CAS PubMed Google Scholar
Mao, C., Liu, X., Zhang, Y., Lei, G., Yan, Y., Lee, H., et al. (2021). DHODH-mediated ferroptosis defence is a targetable vulnerability in cancer. Nature, 593(7860), 586–590. https://doi.org/10.1038/s41586-021-03539-7
Article CAS PubMed PubMed Central Google Scholar
Freitas, F. P., Alborzinia, H., Dos Santos, A. F., Nepachalovich, P., Pedrera, L., Zilka, O., et al. (2024). 7-Dehydrocholesterol is an endogenous suppressor of ferroptosis. Nature, 626(7998), 401–410. https://doi.org/10.1038/s41586-023-06878-9
Article CAS PubMed Google Scholar
Li, Y., Ran, Q., Duan, Q., Jin, J., Wang, Y., Yu, L., et al. (2024). 7-Dehydrocholesterol dictates ferroptosis sensitivity. Nature, 626(7998), 411–418. https://doi.org/10.1038/s41586-023-06983-9
Article CAS PubMed PubMed Central Google Scholar
Lee, H., Zandkarimi, F., Zhang, Y., Meena, J. K., Kim, J., Zhuang, L., et al. (2020). Energy-stress-mediated AMPK activation inhibits ferroptosis. Nature Cell Biology, 22(2), 225–234. https://doi.org/10.1038/s41556-020-0461-8
Article CAS PubMed PubMed Central Google Scholar
Gao, M., Yi, J., Zhu, J., Minikes, A. M., Monian, P., Thompson, C. B., et al. (2019). Role of mitochondria in ferroptosis. Mol Cell, 73(2), 354-363 e353. https://doi.org/10.1016/j.molcel.2018.10.042
Article CAS PubMed Google Scholar
Mao, C., Lei, G., Horbath, A., Wang, M., Lu, Z., Yan, Y., et al. (2024). Unraveling ETC complex I function in ferroptosis reveals a potential ferroptosis-inducing therapeutic strategy for LKB1-deficient cancers. Mol Cell, 84(10), 1964-1979 e1966. https://doi.org/10.1016/j.molcel.2024.04.009
Article CAS PubMed Google Scholar
You, J. H., Lee, J., & Roh, J. L. (2021). PGRMC1-dependent lipophagy promotes ferroptosis in paclitaxel-tolerant persister cancer cells. Journal of Experimental & Clinical Cancer Research, 40(1), 350. https://doi.org/10.1186/s13046-021-02168-2
Shin, D., Lee, J., You, J. H., Kim, D., & Roh, J. L. (2020). Dihydrolipoamide dehydrogenase regulates cystine deprivation-induced ferroptosis in head and neck cancer. Redox Biology, 30, 101418. https://doi.org/10.1016/j.redox.2019.101418
Article CAS PubMed PubMed Central Google Scholar
Mancias, J. D., Pontano Vaites, L., Nissim, S., Biancur, D. E., Kim, A. J., Wang, X., et al. (2015). Ferritinophagy via NCOA4 is required for erythropoiesis and is regulated by iron dependent HERC2-mediated proteolysis. Elife, 4, e10308. https://doi.org/10.7554/eLife.10308
Wu, H., Liu, Q., Shan, X., Gao, W., & Chen, Q. (2023). ATM orchestrates ferritinophagy and ferroptosis by phosphorylating NCOA4. Autophagy, 19(7), 2062–2077. https://doi.org/10.1080/15548627.2023.2170960
Article CAS PubMed PubMed Central Google Scholar
Li, K., Chen, B., Xu, A., Shen, J., Li, K., Hao, K., et al. (2022). TRIM7 modulates NCOA4-mediated ferritinophagy and ferroptosis in glioblastoma cells. Redox Biology, 56, 102451. https://doi.org/10.1016/j.redox.2022.102451
Article CAS PubMed PubMed Central Google Scholar
Fuhrmann, D. C., Mondorf, A., Beifuss, J., Jung, M., & Brune, B. (2020). Hypoxia inhibits ferritinophagy, increases mitochondrial ferritin, and protects from ferroptosis. Redox Biology, 36, 101670. https://doi.org/10.1016/j.redox.2020.101670
Article CAS PubMed PubMed Central Google Scholar
Wang, X., Xu, L., Meng, Y., Chen, F., Zhuang, J., Wang, M., et al. (2024). FOXO1-NCOA4 axis contributes to cisplatin-induced cochlea spiral ganglion neuron ferroptosis via ferritinophagy. Adv Sci (Weinh), 11(40), e2402671. https://doi.org/10.1002/advs.202402671
Lee, J., You, J. H., & Roh, J. L. (2022). Poly(rC)-binding protein 1 represses ferritinophagy-mediated ferroptosis in head and neck cancer. Redox Biology, 51, 102276. https://doi.org/10.1016/j.redox.2022.102276
Comments (0)