Waddington, C. H. (2011). The epigenotype. International Journal of Epidemiology, 41(1), 10–13. https://doi.org/10.1093/ije/dyr184
Cheng, Y., et al. (2019). Targeting epigenetic regulators for cancer therapy: Mechanisms and advances in clinical trials. Signal Transduction and Targeted Therapy, 4(1), 62. https://doi.org/10.1038/s41392-019-0095-0
PubMed PubMed Central Google Scholar
Gibney, E. R., & Nolan, C. M. (2010). Epigenetics and gene expression. Heredity, 105(1), 4–13. https://doi.org/10.1038/hdy.2010.54
Dawson, M. A., & Kouzarides, T. (2012). Cancer epigenetics: From mechanism to therapy, (in eng). Cell, 150(1), 12–27. https://doi.org/10.1016/j.cell.2012.06.013
Fitz-James, M. H., & Cavalli, G. (2022). Molecular mechanisms of transgenerational epigenetic inheritance. Nature Reviews Genetics, 23(6), 325–341. https://doi.org/10.1038/s41576-021-00438-5
Wu, Y.-L., et al. (2023). Epigenetic regulation in metabolic diseases: Mechanisms and advances in clinical study. Signal Transduction and Targeted Therapy, 8(1), 98. https://doi.org/10.1038/s41392-023-01333-7
PubMed PubMed Central Google Scholar
Bannister, A. J., & Kouzarides, T. (2011). Regulation of chromatin by histone modifications. Cell Research, 21(3), 381–395. https://doi.org/10.1038/cr.2011.22
CAS PubMed PubMed Central Google Scholar
Izzo, L. T., & Wellen, K. E. (2019). Histone lactylation links metabolism and gene regulation, (in eng). Nature, 574(7779), 492–493. https://doi.org/10.1038/d41586-019-03122-1
Arrowsmith, C. H., Bountra, C., Fish, P. V., Lee, K., & Schapira, M. (2012). Epigenetic protein families: A new frontier for drug discovery. Nature Reviews Drug Discovery, 11(5), 384–400. https://doi.org/10.1038/nrd3674
Martin, C., & Zhang, Y. (2005). The diverse functions of histone lysine methylation. Nature Reviews Molecular Cell Biology, 6(11), 838–849. https://doi.org/10.1038/nrm1761
Jin, N., et al. (2021). Advances in epigenetic therapeutics with focus on solid tumors, (in eng). Clin Epigenetics, 13(1), 83. https://doi.org/10.1186/s13148-021-01069-7
CAS PubMed PubMed Central Google Scholar
Sharma, S., Kelly, T. K., & Jones, P. A. (2009). Epigenetics in cancer. Carcinogenesis, 31(1), 27–36. https://doi.org/10.1093/carcin/bgp220
CAS PubMed PubMed Central Google Scholar
Yu, X., et al. (2024). Cancer epigenetics: From laboratory studies and clinical trials to precision medicine. Cell Death Discovery, 10(1), 28. https://doi.org/10.1038/s41420-024-01803-z
PubMed PubMed Central Google Scholar
Hanahan, D. (2022). Hallmarks of cancer: New dimensions, (in eng). Cancer Discovery, 12(1), 31–46. https://doi.org/10.1158/2159-8290.Cd-21-1059
Terranova-Barberio, M., Thomas, S., & Munster, P. N. (2016). Epigenetic modifiers in immunotherapy: A focus on checkpoint inhibitors, (in eng). Immunotherapy, 8(6), 705–719. https://doi.org/10.2217/imt-2016-0014
CAS PubMed PubMed Central Google Scholar
Short, N. J., & Kantarjian, H. (2022). Hypomethylating agents for the treatment of myelodysplastic syndromes and acute myeloid leukemia: Past discoveries and future directions, (in eng). American Journal of Hematology, 97(12), 1616–1626. https://doi.org/10.1002/ajh.26667
Suraweera, A., O’Byrne, K. J., & Richard, D. J. (2018). Combination therapy with Histone Deacetylase Inhibitors (HDACi) for the treatment of cancer: Achieving the full therapeutic potential of HDACi," (in eng). Frontiers in Oncology, 8, 92. https://doi.org/10.3389/fonc.2018.00092
PubMed PubMed Central Google Scholar
Mullard, A. (2020). FDA approves an inhibitor of a novel “epigenetic writer”, (in eng). Nature Reviews. Drug Discovery, 19(3), 156. https://doi.org/10.1038/d41573-020-00024-0
Tontsch-Grunt, U., et al. (2022). Therapeutic impact of BET inhibitor BI 894999 treatment: Backtranslation from the clinic. British Journal of Cancer, 127(3), 577–586. https://doi.org/10.1038/s41416-022-01815-5
CAS PubMed PubMed Central Google Scholar
Roberti, A., Valdes, A. F., Torrecillas, R., Fraga, M. F., & Fernandez, A. F. (2019). Epigenetics in cancer therapy and nanomedicine. Clinical Epigenetics, 11(1), 81. https://doi.org/10.1186/s13148-019-0675-4
PubMed PubMed Central Google Scholar
Li, E., & Zhang, Y. (2014). DNA methylation in mammals. Cold Spring Harbor Perspectives in Biology, 6(5), a019133.
PubMed PubMed Central Google Scholar
Veland, N., et al. (2019). DNMT3L facilitates DNA methylation partly by maintaining DNMT3A stability in mouse embryonic stem cells, (in eng). Nucleic Acids Research, 47(1), 152–167. https://doi.org/10.1093/nar/gky947
Rasmussen, K. D., & Helin, K. (2016). Role of TET enzymes in DNA methylation, development, and cancer, (in eng). Genes & Development, 30(7), 733–750. https://doi.org/10.1101/gad.276568.115
An, J., Rao, A., & Ko, M. (2017). TET family dioxygenases and DNA demethylation in stem cells and cancers. Experimental & Molecular Medicine, 49(4), e323–e323. https://doi.org/10.1038/emm.2017.5
Itzykson, R., et al. (2013). Clonal architecture of chronic myelomonocytic leukemias, (in eng). Blood, 121(12), 2186–2198. https://doi.org/10.1182/blood-2012-06-440347
Nishiyama, A., & Nakanishi, M. (2021). Navigating the DNA methylation landscape of cancer, (in eng). Trends in Genetics, 37(11), 1012–1027. https://doi.org/10.1016/j.tig.2021.05.002
Das, P. M., & Singal, R. (2004). DNA methylation and cancer, (in eng). Journal of Clinical Oncology, 22(22), 4632–4642. https://doi.org/10.1200/jco.2004.07.151
Laranjeira, A. B. A., Hollingshead, M. G., Nguyen, D., Kinders, R. J., Doroshow, J. H., & Yang, S. X. (2023). DNA damage, demethylation and anticancer activity of DNA methyltransferase (DNMT) inhibitors. Scientific Reports, 13(1), 5964. https://doi.org/10.1038/s41598-023-32509-4
CAS PubMed PubMed Central Google Scholar
Jin, B. & Robertson, K. D. (2012). DNA methyltransferases, DNA damage repair, and cancer. Epigenetic Alterations in Oncogenesis, 3–29.
Palii, S. S., Van Emburgh, B. O., Sankpal, U. T., Brown, K. D., & Robertson, K. D. (2008). DNA methylation inhibitor 5-Aza-2′-deoxycytidine induces reversible genome-wide DNA damage that is distinctly influenced by DNA methyltransferases 1 and 3B. Molecular and Cellular Biology, 28(2), 752–771.
Uddin, M. G., & Fandy, T. E. (2021). DNA methylation inhibitors: Retrospective and perspective view, (in eng). Advances in Cancer Research, 152, 205–223. https://doi.org/10.1016/bs.acr.2021.03.007
CAS PubMed PubMed Central Google Scholar
Zhang, Z., et al. (2022). Recent progress in DNA methyltransferase inhibitors as anticancer agents, (in eng). Frontiers in Pharmacology, 13, 1072651. https://doi.org/10.3389/fphar.2022.1072651
CAS PubMed PubMed Central Google Scholar
Chen, T., Mahdadi, S., Vidal, M., & Desbène-Finck, S. (2024). Non-nucleoside inhibitors of DNMT1 and DNMT3 for targeted cancer therapy. Pharmacological Research, 207, 107328. https://doi.org/10.1016/j.phrs.2024.107328
Fernandez, A., O’Leary, C., O’Byrne, K. J., Burgess, J., Richard, D. J., & Suraweera, A. (2021). Epigenetic mechanisms in DNA double strand break repair: A clinical review, (in eng). Frontiers in Molecular Biosciences, 8, 685440. https://doi.org/10.3389/fmolb.2021.685440
Comments (0)