Epigenetic drugs in cancer therapy

Waddington, C. H. (2011). The epigenotype. International Journal of Epidemiology, 41(1), 10–13. https://doi.org/10.1093/ije/dyr184

PubMed  Google Scholar 

Cheng, Y., et al. (2019). Targeting epigenetic regulators for cancer therapy: Mechanisms and advances in clinical trials. Signal Transduction and Targeted Therapy, 4(1), 62. https://doi.org/10.1038/s41392-019-0095-0

PubMed  PubMed Central  Google Scholar 

Gibney, E. R., & Nolan, C. M. (2010). Epigenetics and gene expression. Heredity, 105(1), 4–13. https://doi.org/10.1038/hdy.2010.54

CAS  PubMed  Google Scholar 

Dawson, M. A., & Kouzarides, T. (2012). Cancer epigenetics: From mechanism to therapy, (in eng). Cell, 150(1), 12–27. https://doi.org/10.1016/j.cell.2012.06.013

CAS  PubMed  Google Scholar 

Fitz-James, M. H., & Cavalli, G. (2022). Molecular mechanisms of transgenerational epigenetic inheritance. Nature Reviews Genetics, 23(6), 325–341. https://doi.org/10.1038/s41576-021-00438-5

CAS  PubMed  Google Scholar 

Wu, Y.-L., et al. (2023). Epigenetic regulation in metabolic diseases: Mechanisms and advances in clinical study. Signal Transduction and Targeted Therapy, 8(1), 98. https://doi.org/10.1038/s41392-023-01333-7

PubMed  PubMed Central  Google Scholar 

Bannister, A. J., & Kouzarides, T. (2011). Regulation of chromatin by histone modifications. Cell Research, 21(3), 381–395. https://doi.org/10.1038/cr.2011.22

CAS  PubMed  PubMed Central  Google Scholar 

Izzo, L. T., & Wellen, K. E. (2019). Histone lactylation links metabolism and gene regulation, (in eng). Nature, 574(7779), 492–493. https://doi.org/10.1038/d41586-019-03122-1

CAS  PubMed  Google Scholar 

Arrowsmith, C. H., Bountra, C., Fish, P. V., Lee, K., & Schapira, M. (2012). Epigenetic protein families: A new frontier for drug discovery. Nature Reviews Drug Discovery, 11(5), 384–400. https://doi.org/10.1038/nrd3674

CAS  PubMed  Google Scholar 

Martin, C., & Zhang, Y. (2005). The diverse functions of histone lysine methylation. Nature Reviews Molecular Cell Biology, 6(11), 838–849. https://doi.org/10.1038/nrm1761

CAS  PubMed  Google Scholar 

Jin, N., et al. (2021). Advances in epigenetic therapeutics with focus on solid tumors, (in eng). Clin Epigenetics, 13(1), 83. https://doi.org/10.1186/s13148-021-01069-7

CAS  PubMed  PubMed Central  Google Scholar 

Sharma, S., Kelly, T. K., & Jones, P. A. (2009). Epigenetics in cancer. Carcinogenesis, 31(1), 27–36. https://doi.org/10.1093/carcin/bgp220

CAS  PubMed  PubMed Central  Google Scholar 

Yu, X., et al. (2024). Cancer epigenetics: From laboratory studies and clinical trials to precision medicine. Cell Death Discovery, 10(1), 28. https://doi.org/10.1038/s41420-024-01803-z

PubMed  PubMed Central  Google Scholar 

Hanahan, D. (2022). Hallmarks of cancer: New dimensions, (in eng). Cancer Discovery, 12(1), 31–46. https://doi.org/10.1158/2159-8290.Cd-21-1059

CAS  PubMed  Google Scholar 

Terranova-Barberio, M., Thomas, S., & Munster, P. N. (2016). Epigenetic modifiers in immunotherapy: A focus on checkpoint inhibitors, (in eng). Immunotherapy, 8(6), 705–719. https://doi.org/10.2217/imt-2016-0014

CAS  PubMed  PubMed Central  Google Scholar 

Short, N. J., & Kantarjian, H. (2022). Hypomethylating agents for the treatment of myelodysplastic syndromes and acute myeloid leukemia: Past discoveries and future directions, (in eng). American Journal of Hematology, 97(12), 1616–1626. https://doi.org/10.1002/ajh.26667

CAS  PubMed  Google Scholar 

Suraweera, A., O’Byrne, K. J., & Richard, D. J. (2018). Combination therapy with Histone Deacetylase Inhibitors (HDACi) for the treatment of cancer: Achieving the full therapeutic potential of HDACi," (in eng). Frontiers in Oncology, 8, 92. https://doi.org/10.3389/fonc.2018.00092

PubMed  PubMed Central  Google Scholar 

Mullard, A. (2020). FDA approves an inhibitor of a novel “epigenetic writer”, (in eng). Nature Reviews. Drug Discovery, 19(3), 156. https://doi.org/10.1038/d41573-020-00024-0

CAS  PubMed  Google Scholar 

Tontsch-Grunt, U., et al. (2022). Therapeutic impact of BET inhibitor BI 894999 treatment: Backtranslation from the clinic. British Journal of Cancer, 127(3), 577–586. https://doi.org/10.1038/s41416-022-01815-5

CAS  PubMed  PubMed Central  Google Scholar 

Roberti, A., Valdes, A. F., Torrecillas, R., Fraga, M. F., & Fernandez, A. F. (2019). Epigenetics in cancer therapy and nanomedicine. Clinical Epigenetics, 11(1), 81. https://doi.org/10.1186/s13148-019-0675-4

PubMed  PubMed Central  Google Scholar 

Li, E., & Zhang, Y. (2014). DNA methylation in mammals. Cold Spring Harbor Perspectives in Biology, 6(5), a019133.

PubMed  PubMed Central  Google Scholar 

Veland, N., et al. (2019). DNMT3L facilitates DNA methylation partly by maintaining DNMT3A stability in mouse embryonic stem cells, (in eng). Nucleic Acids Research, 47(1), 152–167. https://doi.org/10.1093/nar/gky947

CAS  PubMed  Google Scholar 

Rasmussen, K. D., & Helin, K. (2016). Role of TET enzymes in DNA methylation, development, and cancer, (in eng). Genes & Development, 30(7), 733–750. https://doi.org/10.1101/gad.276568.115

CAS  Google Scholar 

An, J., Rao, A., & Ko, M. (2017). TET family dioxygenases and DNA demethylation in stem cells and cancers. Experimental & Molecular Medicine, 49(4), e323–e323. https://doi.org/10.1038/emm.2017.5

CAS  Google Scholar 

Itzykson, R., et al. (2013). Clonal architecture of chronic myelomonocytic leukemias, (in eng). Blood, 121(12), 2186–2198. https://doi.org/10.1182/blood-2012-06-440347

CAS  PubMed  Google Scholar 

Nishiyama, A., & Nakanishi, M. (2021). Navigating the DNA methylation landscape of cancer, (in eng). Trends in Genetics, 37(11), 1012–1027. https://doi.org/10.1016/j.tig.2021.05.002

CAS  PubMed  Google Scholar 

Das, P. M., & Singal, R. (2004). DNA methylation and cancer, (in eng). Journal of Clinical Oncology, 22(22), 4632–4642. https://doi.org/10.1200/jco.2004.07.151

CAS  PubMed  Google Scholar 

Laranjeira, A. B. A., Hollingshead, M. G., Nguyen, D., Kinders, R. J., Doroshow, J. H., & Yang, S. X. (2023). DNA damage, demethylation and anticancer activity of DNA methyltransferase (DNMT) inhibitors. Scientific Reports, 13(1), 5964. https://doi.org/10.1038/s41598-023-32509-4

CAS  PubMed  PubMed Central  Google Scholar 

Jin, B. & Robertson, K. D. (2012). DNA methyltransferases, DNA damage repair, and cancer. Epigenetic Alterations in Oncogenesis, 3–29.

Palii, S. S., Van Emburgh, B. O., Sankpal, U. T., Brown, K. D., & Robertson, K. D. (2008). DNA methylation inhibitor 5-Aza-2′-deoxycytidine induces reversible genome-wide DNA damage that is distinctly influenced by DNA methyltransferases 1 and 3B. Molecular and Cellular Biology, 28(2), 752–771.

CAS  PubMed  Google Scholar 

Uddin, M. G., & Fandy, T. E. (2021). DNA methylation inhibitors: Retrospective and perspective view, (in eng). Advances in Cancer Research, 152, 205–223. https://doi.org/10.1016/bs.acr.2021.03.007

CAS  PubMed  PubMed Central  Google Scholar 

Zhang, Z., et al. (2022). Recent progress in DNA methyltransferase inhibitors as anticancer agents, (in eng). Frontiers in Pharmacology, 13, 1072651. https://doi.org/10.3389/fphar.2022.1072651

CAS  PubMed  PubMed Central  Google Scholar 

Chen, T., Mahdadi, S., Vidal, M., & Desbène-Finck, S. (2024). Non-nucleoside inhibitors of DNMT1 and DNMT3 for targeted cancer therapy. Pharmacological Research, 207, 107328. https://doi.org/10.1016/j.phrs.2024.107328

CAS  PubMed  Google Scholar 

Fernandez, A., O’Leary, C., O’Byrne, K. J., Burgess, J., Richard, D. J., & Suraweera, A. (2021). Epigenetic mechanisms in DNA double strand break repair: A clinical review, (in eng). Frontiers in Molecular Biosciences, 8, 685440. https://doi.org/10.3389/fmolb.2021.685440

CAS  PubMed 

Comments (0)

No login
gif