Anastasiadou, E., Jacob, L. S., & Slack, F. J. (2018). Non-coding RNA networks in cancer. Nature Reviews Cancer, 18(1), 5–18. https://doi.org/10.1038/nrc.2017.99
Article CAS PubMed Google Scholar
Slack, F. J., & Chinnaiyan, A. M. (2019). The Role of Non-coding RNAs in Oncology. Cell, 179(5), 1033–1055. https://doi.org/10.1016/j.cell.2019.10.017
Article CAS PubMed PubMed Central Google Scholar
Xiong, Q., & Zhang, Y. (2023). Small RNA modifications: Regulatory molecules and potential applications. Journal of Hematology & Oncology, 16(1), 64. https://doi.org/10.1186/s13045-023-01466-w
Kumar, P., Kuscu, C., & Dutta, A. (2016). Biogenesis and Function of Transfer RNA-Related Fragments (tRFs). Trends in Biochemical Sciences, 41(8), 679–689. https://doi.org/10.1016/j.tibs.2016.05.004
Article CAS PubMed PubMed Central Google Scholar
Magee, R., & Rigoutsos, I. (2020). On the expanding roles of tRNA fragments in modulating cell behavior. Nucleic Acids Research, 48(17), 9433–9448. https://doi.org/10.1093/nar/gkaa657
Article CAS PubMed PubMed Central Google Scholar
Suzuki, T. (2021). The expanding world of tRNA modifications and their disease relevance. Nature Reviews Molecular Cell Biology, 22(6), 375–392. https://doi.org/10.1038/s41580-021-00342-0
Article CAS PubMed Google Scholar
Pan, T. (2018). Modifications and functional genomics of human transfer RNA. Cell Research, 28(4), 395–404. https://doi.org/10.1038/s41422-018-0013-y
Article CAS PubMed PubMed Central Google Scholar
Chen, Q., Zhang, X., Shi, J., Yan, M., & Zhou, T. (2021). Origins and evolving functionalities of tRNA-derived small RNAs. Trends in Biochemical Sciences, 46(10), 790–804. https://doi.org/10.1016/j.tibs.2021.05.001
Article CAS PubMed PubMed Central Google Scholar
Chen, L., Xu, W., Liu, K., Jiang, Z., Han, Y., Jin, H., et al. (2021). 5' Half of specific tRNAs feeds back to promote corresponding tRNA gene transcription in vertebrate embryos. Science Advances, 7(47), abh0494. https://doi.org/10.1126/sciadv.abh0494
Kumar, P., Anaya, J., Mudunuri, S. B., & Dutta, A. (2014). Meta-analysis of tRNA derived RNA fragments reveals that they are evolutionarily conserved and associate with AGO proteins to recognize specific RNA targets. BMC Biology, 12, 78. https://doi.org/10.1186/s12915-014-0078-0
Article CAS PubMed PubMed Central Google Scholar
Yamasaki, S., Ivanov, P., Hu, G. F., & Anderson, P. (2009). Angiogenin cleaves tRNA and promotes stress-induced translational repression. Journal of Cell Biology, 185(1), 35–42. https://doi.org/10.1083/jcb.200811106
Article CAS PubMed PubMed Central Google Scholar
Guzzi, N., Cieśla, M., Ngoc, P. C. T., Lang, S., Arora, S., Dimitriou, M., et al. (2018). Pseudouridylation of tRNA-derived fragments steers translational control in stem cells. Cell, 173(5), 1204–1216. https://doi.org/10.1016/j.cell.2018.03.008
Article CAS PubMed Google Scholar
Ivanov, P., Emara, M. M., Villen, J., Gygi, S. P., & Anderson, P. (2011). Angiogenin-induced tRNA fragments inhibit translation initiation. Molecular Cell, 43(4), 613–623. https://doi.org/10.1016/j.molcel.2011.06.022
Article CAS PubMed PubMed Central Google Scholar
Kim, H. K., Xu, J., Chu, K., Park, H., Jang, H., Li, P., et al. (2019). A tRNA-Derived Small RNA Regulates Ribosomal Protein S28 Protein Levels after Translation Initiation in Humans and Mice. Cell Reports, 29(12), 3816-3824.e3814. https://doi.org/10.1016/j.celrep.2019.11.062
Article CAS PubMed Google Scholar
Kim, H. K., Fuchs, G., Wang, S., Wei, W., Zhang, Y., Park, H., et al. (2017). A transfer-RNA-derived small RNA regulates ribosome biogenesis. Nature, 552(7683), 57–62. https://doi.org/10.1038/nature25005
Article CAS PubMed PubMed Central Google Scholar
Blanco, S., Bandiera, R., Popis, M., Hussain, S., Lombard, P., Aleksic, J., et al. (2016). Stem cell function and stress response are controlled by protein synthesis. Nature, 534(7607), 335–340. https://doi.org/10.1038/nature18282
Article CAS PubMed PubMed Central Google Scholar
Zhang, X., He, X., Liu, C., Liu, J., Hu, Q., Pan, T., et al. (2016). IL-4 Inhibits the biogenesis of an epigenetically suppressive PIWI-interacting RNA to upregulate CD1a molecules on monocytes/dendritic cells. Journal of Immunology, 196(4), 1591–1603. https://doi.org/10.4049/jimmunol.1500805
Li, S., Xu, Z., & Sheng, J. (2018). tRNA-Derived Small RNA: A novel regulatory small non-coding RNA. Genes, 9(5), https://doi.org/10.3390/genes9050246
Kirchner, S., & Ignatova, Z. (2015). Emerging roles of tRNA in adaptive translation, signalling dynamics and disease. Nature Reviews Genetics, 16(2), 98–112. https://doi.org/10.1038/nrg3861
Article CAS PubMed Google Scholar
Vannini, A., & Cramer, P. (2012). Conservation between the RNA polymerase I, II, and III transcription initiation machineries. Molecular Cell, 45(4), 439–446. https://doi.org/10.1016/j.molcel.2012.01.023
Article CAS PubMed Google Scholar
Liapi, E., van Bilsen, M., Verjans, R., & Schroen, B. (2020). tRNAs and tRNA fragments as modulators of cardiac and skeletal muscle function. Biochimica et Biophysica Acta, Molecular Cell Research, 1867(3), 118465. https://doi.org/10.1016/j.bbamcr.2019.03.012
Article CAS PubMed Google Scholar
Liu, B., Cao, J., Wang, X., Guo, C., Liu, Y., & Wang, T. (2021). Deciphering the tRNA-derived small RNAs: Origin, development, and future. Cell Death & Disease, 13(1), 24. https://doi.org/10.1038/s41419-021-04472-3
Raina, M., & Ibba, M. (2014). tRNAs as regulators of biological processes. Frontiers in Genetics, 5, 171. https://doi.org/10.3389/fgene.2014.00171
Article CAS PubMed PubMed Central Google Scholar
Su, Z., Wilson, B., Kumar, P., & Dutta, A. (2020). Noncanonical Roles of tRNAs: TRNA Fragments and Beyond. Annual Review of Genetics, 54, 47–69. https://doi.org/10.1146/annurev-genet-022620-101840
Article CAS PubMed PubMed Central Google Scholar
Kumar, P., Mudunuri, S. B., Anaya, J., & Dutta, A. (2015). tRFdb: A database for transfer RNA fragments. Nucleic Acids Research, 43(Database issue), D141–145. https://doi.org/10.1093/nar/gku1138
Zheng, L. L., Xu, W. L., Liu, S., Sun, W. J., Li, J. H., Wu, J., et al. (2016). tRF2Cancer: A web server to detect tRNA-derived small RNA fragments (tRFs) and their expression in multiple cancers. Nucleic Acids Research, 44(W1), W185-193. https://doi.org/10.1093/nar/gkw414
Article CAS PubMed PubMed Central Google Scholar
Wang, J. H., Chen, W. X., Mei, S. Q., Yang, Y. D., Yang, J. H., Qu, L. H., et al. (2022). tsRFun: A comprehensive platform for decoding human tsRNA expression, functions and prognostic value by high-throughput small RNA-Seq and CLIP-Seq data. Nucleic Acids Research, 50(D1), D421-d431. https://doi.org/10.1093/nar/gkab1023
Article CAS PubMed Google Scholar
Boccaletto, P., Stefaniak, F., Ray, A., Cappannini, A., Mukherjee, S., Purta, E., et al. (2022). MODOMICS: A database of RNA modification pathways. 2021 update. Nucleic Acids Research, 50(D1), D231–D235. https://doi.org/10.1093/nar/gkab1083
Pliatsika, V., Loher, P., Magee, R., Telonis, A. G., Londin, E., Shigematsu, M., et al. (2018). MINTbase v2.0: A comprehensive database for tRNA-derived fragments that includes nuclear and mitochondrial fragments from all the cancer genome atlas projects. Nucleic Acids Research, 46(D1), D152–D159. https://doi.org/10.1093/nar/gkx1075
Lee, Y. S., Shibata, Y., Malhotra, A., & Dutta, A. (2009). A novel class of small RNAs: TRNA-derived RNA fragments (tRFs). Genes & Development, 23(22), 2639–2649. https://doi.org/10.1101/gad.1837609
Haussecker, D., Huang, Y., Lau, A., Parameswaran, P., Fire, A. Z., & Kay, M. A. (2010). Human tRNA-derived small RNAs in the global r
Comments (0)