The functions and modifications of tRNA-derived small RNAs in cancer biology

Anastasiadou, E., Jacob, L. S., & Slack, F. J. (2018). Non-coding RNA networks in cancer. Nature Reviews Cancer, 18(1), 5–18. https://doi.org/10.1038/nrc.2017.99

Article  CAS  PubMed  Google Scholar 

Slack, F. J., & Chinnaiyan, A. M. (2019). The Role of Non-coding RNAs in Oncology. Cell, 179(5), 1033–1055. https://doi.org/10.1016/j.cell.2019.10.017

Article  CAS  PubMed  PubMed Central  Google Scholar 

Xiong, Q., & Zhang, Y. (2023). Small RNA modifications: Regulatory molecules and potential applications. Journal of Hematology & Oncology, 16(1), 64. https://doi.org/10.1186/s13045-023-01466-w

Article  CAS  Google Scholar 

Kumar, P., Kuscu, C., & Dutta, A. (2016). Biogenesis and Function of Transfer RNA-Related Fragments (tRFs). Trends in Biochemical Sciences, 41(8), 679–689. https://doi.org/10.1016/j.tibs.2016.05.004

Article  CAS  PubMed  PubMed Central  Google Scholar 

Magee, R., & Rigoutsos, I. (2020). On the expanding roles of tRNA fragments in modulating cell behavior. Nucleic Acids Research, 48(17), 9433–9448. https://doi.org/10.1093/nar/gkaa657

Article  CAS  PubMed  PubMed Central  Google Scholar 

Suzuki, T. (2021). The expanding world of tRNA modifications and their disease relevance. Nature Reviews Molecular Cell Biology, 22(6), 375–392. https://doi.org/10.1038/s41580-021-00342-0

Article  CAS  PubMed  Google Scholar 

Pan, T. (2018). Modifications and functional genomics of human transfer RNA. Cell Research, 28(4), 395–404. https://doi.org/10.1038/s41422-018-0013-y

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chen, Q., Zhang, X., Shi, J., Yan, M., & Zhou, T. (2021). Origins and evolving functionalities of tRNA-derived small RNAs. Trends in Biochemical Sciences, 46(10), 790–804. https://doi.org/10.1016/j.tibs.2021.05.001

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chen, L., Xu, W., Liu, K., Jiang, Z., Han, Y., Jin, H., et al. (2021). 5' Half of specific tRNAs feeds back to promote corresponding tRNA gene transcription in vertebrate embryos. Science Advances, 7(47), abh0494. https://doi.org/10.1126/sciadv.abh0494

Kumar, P., Anaya, J., Mudunuri, S. B., & Dutta, A. (2014). Meta-analysis of tRNA derived RNA fragments reveals that they are evolutionarily conserved and associate with AGO proteins to recognize specific RNA targets. BMC Biology, 12, 78. https://doi.org/10.1186/s12915-014-0078-0

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yamasaki, S., Ivanov, P., Hu, G. F., & Anderson, P. (2009). Angiogenin cleaves tRNA and promotes stress-induced translational repression. Journal of Cell Biology, 185(1), 35–42. https://doi.org/10.1083/jcb.200811106

Article  CAS  PubMed  PubMed Central  Google Scholar 

Guzzi, N., Cieśla, M., Ngoc, P. C. T., Lang, S., Arora, S., Dimitriou, M., et al. (2018). Pseudouridylation of tRNA-derived fragments steers translational control in stem cells. Cell, 173(5), 1204–1216. https://doi.org/10.1016/j.cell.2018.03.008

Article  CAS  PubMed  Google Scholar 

Ivanov, P., Emara, M. M., Villen, J., Gygi, S. P., & Anderson, P. (2011). Angiogenin-induced tRNA fragments inhibit translation initiation. Molecular Cell, 43(4), 613–623. https://doi.org/10.1016/j.molcel.2011.06.022

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kim, H. K., Xu, J., Chu, K., Park, H., Jang, H., Li, P., et al. (2019). A tRNA-Derived Small RNA Regulates Ribosomal Protein S28 Protein Levels after Translation Initiation in Humans and Mice. Cell Reports, 29(12), 3816-3824.e3814. https://doi.org/10.1016/j.celrep.2019.11.062

Article  CAS  PubMed  Google Scholar 

Kim, H. K., Fuchs, G., Wang, S., Wei, W., Zhang, Y., Park, H., et al. (2017). A transfer-RNA-derived small RNA regulates ribosome biogenesis. Nature, 552(7683), 57–62. https://doi.org/10.1038/nature25005

Article  CAS  PubMed  PubMed Central  Google Scholar 

Blanco, S., Bandiera, R., Popis, M., Hussain, S., Lombard, P., Aleksic, J., et al. (2016). Stem cell function and stress response are controlled by protein synthesis. Nature, 534(7607), 335–340. https://doi.org/10.1038/nature18282

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhang, X., He, X., Liu, C., Liu, J., Hu, Q., Pan, T., et al. (2016). IL-4 Inhibits the biogenesis of an epigenetically suppressive PIWI-interacting RNA to upregulate CD1a molecules on monocytes/dendritic cells. Journal of Immunology, 196(4), 1591–1603. https://doi.org/10.4049/jimmunol.1500805

Article  CAS  Google Scholar 

Li, S., Xu, Z., & Sheng, J. (2018). tRNA-Derived Small RNA: A novel regulatory small non-coding RNA. Genes, 9(5), https://doi.org/10.3390/genes9050246

Kirchner, S., & Ignatova, Z. (2015). Emerging roles of tRNA in adaptive translation, signalling dynamics and disease. Nature Reviews Genetics, 16(2), 98–112. https://doi.org/10.1038/nrg3861

Article  CAS  PubMed  Google Scholar 

Vannini, A., & Cramer, P. (2012). Conservation between the RNA polymerase I, II, and III transcription initiation machineries. Molecular Cell, 45(4), 439–446. https://doi.org/10.1016/j.molcel.2012.01.023

Article  CAS  PubMed  Google Scholar 

Liapi, E., van Bilsen, M., Verjans, R., & Schroen, B. (2020). tRNAs and tRNA fragments as modulators of cardiac and skeletal muscle function. Biochimica et Biophysica Acta, Molecular Cell Research, 1867(3), 118465. https://doi.org/10.1016/j.bbamcr.2019.03.012

Article  CAS  PubMed  Google Scholar 

Liu, B., Cao, J., Wang, X., Guo, C., Liu, Y., & Wang, T. (2021). Deciphering the tRNA-derived small RNAs: Origin, development, and future. Cell Death & Disease, 13(1), 24. https://doi.org/10.1038/s41419-021-04472-3

Article  CAS  Google Scholar 

Raina, M., & Ibba, M. (2014). tRNAs as regulators of biological processes. Frontiers in Genetics, 5, 171. https://doi.org/10.3389/fgene.2014.00171

Article  CAS  PubMed  PubMed Central  Google Scholar 

Su, Z., Wilson, B., Kumar, P., & Dutta, A. (2020). Noncanonical Roles of tRNAs: TRNA Fragments and Beyond. Annual Review of Genetics, 54, 47–69. https://doi.org/10.1146/annurev-genet-022620-101840

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kumar, P., Mudunuri, S. B., Anaya, J., & Dutta, A. (2015). tRFdb: A database for transfer RNA fragments. Nucleic Acids Research, 43(Database issue), D141–145. https://doi.org/10.1093/nar/gku1138

Zheng, L. L., Xu, W. L., Liu, S., Sun, W. J., Li, J. H., Wu, J., et al. (2016). tRF2Cancer: A web server to detect tRNA-derived small RNA fragments (tRFs) and their expression in multiple cancers. Nucleic Acids Research, 44(W1), W185-193. https://doi.org/10.1093/nar/gkw414

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wang, J. H., Chen, W. X., Mei, S. Q., Yang, Y. D., Yang, J. H., Qu, L. H., et al. (2022). tsRFun: A comprehensive platform for decoding human tsRNA expression, functions and prognostic value by high-throughput small RNA-Seq and CLIP-Seq data. Nucleic Acids Research, 50(D1), D421-d431. https://doi.org/10.1093/nar/gkab1023

Article  CAS  PubMed  Google Scholar 

Boccaletto, P., Stefaniak, F., Ray, A., Cappannini, A., Mukherjee, S., Purta, E., et al. (2022). MODOMICS: A database of RNA modification pathways. 2021 update. Nucleic Acids Research, 50(D1), D231–D235. https://doi.org/10.1093/nar/gkab1083

Pliatsika, V., Loher, P., Magee, R., Telonis, A. G., Londin, E., Shigematsu, M., et al. (2018). MINTbase v2.0: A comprehensive database for tRNA-derived fragments that includes nuclear and mitochondrial fragments from all the cancer genome atlas projects. Nucleic Acids Research, 46(D1), D152–D159. https://doi.org/10.1093/nar/gkx1075

Lee, Y. S., Shibata, Y., Malhotra, A., & Dutta, A. (2009). A novel class of small RNAs: TRNA-derived RNA fragments (tRFs). Genes & Development, 23(22), 2639–2649. https://doi.org/10.1101/gad.1837609

Article  CAS  Google Scholar 

Haussecker, D., Huang, Y., Lau, A., Parameswaran, P., Fire, A. Z., & Kay, M. A. (2010). Human tRNA-derived small RNAs in the global r

Comments (0)

No login
gif