Enomoto T, Okada H, Tomita H, et al. Glycocalyx analysis of bladder cancer: three-dimensional images in electron microscopy and Vicia villosa lectin as a marker for invasiveness in frozen sections. Front Cell Dev Biol. 2023;11:1308879.
Tak S, Han G, Leem S-H, et al. Prediction of anticancer drug resistance using a 3d microfluidic bladder cancer model combined with convolutional neural network-based image analysis. Front Bioeng Biotechnol. 2023;11:1302983.
Jing S, Yang E, Luo Z, et al. Perioperative outcomes and continence following robotic-assisted radical cystectomy with Mainz pouch II urinary diversion in patients with bladder cancer. BMC Cancer. 2024;24(1):127.
CAS PubMed PubMed Central Google Scholar
Ma YY, Zhang GJ, Liu PF, et al. Comprehensive genomic analysis of puerarin in inhibiting bladder urothelial carcinoma cell proliferation and migration. Recent Pat Anticancer Drug Discov. 2023;19(4):516–29.
Kurabayashi A, Fukuhara H, Furihata K, et al. Photodynamic diagnosis and therapy in non-muscle-invasive bladder cancer. Cancers (Basel). 2024;16(13):2299.
CAS PubMed PubMed Central Google Scholar
Savin Z, Mano R, Lazarovich A, et al. Assessing the impact of percutaneous nephrostomy presence on neoadjuvant treatment quality in patients with muscle invasive bladder cancer. Clin Genitourin Cancer. 2024;22(2):491–6.
Abou Chakra M, Packiam VT, Duquesne I, et al. Combination intravesical chemotherapy for non-muscle invasive bladder cancer (NMIBC) as first-line or rescue therapy: where do we stand now? Expert Opin Pharmacother. 2024;25(2):203–14.
Paliogiannis P, Lobrano R, Bella MA, et al. Pd-L1 Immunohistochemical expression in bladder urothelial cancer with Sp263, Sp142 and 22c3 antibodies: a comparative study. Ann Diagn Pathol. 2024;69: 152267.
Alcantara MB, Tang WS, Wang D, et al. Targeting Stat3 in tumor-associated antigen-presenting cells as a strategy for kidney and bladder cancer immunotherapy. Front Immunol. 2023;14:1274781.
Gong Y, Cheng Y, Zhang J, et al. Role of additional MRI-based morphologic measurements on the performance of VI-RADS for muscle-invasive bladder cancer. J Magn Reson Imaging. 2024;60:1113–23.
Huang S, Huang Y, Li C, et al. Efficacy and safety of neoadjuvant Pd-1 inhibitors or Pd-L1 inhibitors for muscle invasive bladder cancer: a systematic review and meta-analysis. Front Immunol. 2023;14:1332213.
Kochergin M, Fahmy O, Asimakopoulos A, et al. Photodynamic therapy: current trends and potential future role in the treatment of bladder cancer. Int J Mol Sci. 2024;25(2):960.
CAS PubMed PubMed Central Google Scholar
Ghannam SF, Makhlouf S, Alsaleem M, et al. The conflicting prognostic role of the stroma-ratio in breast cancer molecular subtypes. Mod Pathol. 2024;29: 100607. https://doi.org/10.1016/j.modpat.2024.100607.
Li Y, Ma J, Ma X, et al. PD-L1 expression and tumor-infiltrating lymphocytes: correlations and prognostic values in Chinese triple-negative breast cancer patients with different molecular subtyping. Pathol Res Pract. 2024;23(262): 155556. https://doi.org/10.1016/j.prp.2024.155556.
Li Y, Yang K, Li K, et al. Clinical and molecular characteristics of bladder urothelial carcinoma subtypes. J Cell Biochem. 2019;120(6):9956–63. https://doi.org/10.1002/jcb.28278.
Article CAS PubMed Google Scholar
Liu S, Zhai J, Li D, et al. Identification and validation of molecular subtypes’ characteristics in bladder urothelial carcinoma based on autophagy-dependent ferroptosis. Heliyon. 2023;9(11): e21092. https://doi.org/10.1016/j.heliyon.2023.e21092.
Article PubMed PubMed Central Google Scholar
Guo CC, Bondaruk J, Yao H, et al. Assessment of luminal and basal phenotypes in bladder cancer. Sci Rep. 2020;10(1):9743. https://doi.org/10.1038/s41598-020-66747-7.
Article CAS PubMed PubMed Central Google Scholar
Garczyk S, Bischoff F, Schneider U, et al. Intratumoral heterogeneity of surrogate molecular subtypes in urothelial carcinoma in situ of the urinary bladder: implications for prognostic stratification of high-risk non-muscle-invasive bladder cancer. Virchows Arch. 2021;479(2):325–35. https://doi.org/10.1007/s00428-021-03054-0.
Article CAS PubMed PubMed Central Google Scholar
Rasti A, Khalili M, Fakhr Yasseri AM, et al. Evaluation of IGF2, KRT14, and KRT20 as urinary biomarkers in patients with bladder cancer. Rep Biochem Mol Biol. 2023;11(4):710–9. https://doi.org/10.52547/rbmb.11.4.710.
Article CAS PubMed PubMed Central Google Scholar
Sjödahl G, Abrahamsson J, Holmsten K, et al. Different responses to neoadjuvant chemotherapy in urothelial carcinoma molecular subtypes. Eur Urol. 2022;81(5):523–32. https://doi.org/10.1016/j.eururo.2021.10.035.
Article CAS PubMed Google Scholar
Kaczmarek K, Plage H, Furlano K, et al. Loss of Upk1a and Upk1b expression is linked to stage progression in urothelial carcinoma of the bladder. Int Urol Nephrol. 2024;56(2):499–508. https://doi.org/10.1007/s11255-023-03800-0.
Article CAS PubMed Google Scholar
Zhu X, Chan E, Turski ML, et al. HER2 overexpression in urothelial carcinoma with GATA3 and PPARG copy number gains. Oncologist. 2024;29(8):e1094–7. https://doi.org/10.1093/oncolo/oyae127.
Article PubMed PubMed Central Google Scholar
Shi MJ, Fontugne J, Moreno-Vega A, et al. FGFR3 mutational activation can induce luminal-like papillary bladder tumor formation and favors a male sex bias. Eur Urol. 2023;83(1):70–81. https://doi.org/10.1016/j.eururo.2022.09.030.
Article CAS PubMed Google Scholar
Nakauma-González JA, Rijnders M, van Riet J, et al. Comprehensive molecular characterization reveals genomic and transcriptomic subtypes of metastatic urothelial carcinoma. Eur Urol. 2022;81(4):331–6. https://doi.org/10.1016/j.eururo.2022.01.026.
Article CAS PubMed Google Scholar
Fong MHY, Feng M, McConkey DJ, Choi W. Update on bladder cancer molecular subtypes. Transl Androl Urol. 2020;9(6):2881–9. https://doi.org/10.21037/tau-2019-mibc-12.
Article PubMed PubMed Central Google Scholar
Queipo FJ, Unamunzaga GM, Negro BF, et al. Immunohistochemistry subtyping of urothelial carcinoma is feasible in the daily practice. Virchows Arch. 2022;481(2):191–200. https://doi.org/10.1007/s00428-022-03361-0.
Article CAS PubMed Google Scholar
Grivas P, Bismar TA, Alva AS, et al. Validation of a neuroendocrine-like classifier confirms poor outcomes in patients with bladder cancer treated with cisplatin-based neoadjuvant chemotherapy. Urol Oncol. 2020;38(4):262–8. https://doi.org/10.1016/j.urolonc.2019.11.004.
Article CAS PubMed Google Scholar
Szarvas T, Jardin-Watelet B, Bourgoin N, et al. High-soluble CGA levels are associated with poor survival in bladder cancer. Endocr Connect. 2019;8(5):625–33. https://doi.org/10.1530/EC-19-0068.
Article CAS PubMed PubMed Central Google Scholar
Shen P, Jing Y, Zhang R, et al. Comprehensive genomic profiling of neuroendocrine bladder cancer pinpoints molecular origin and potential therapeutics. Oncogene. 2018;37(22):3039–44. https://doi.org/10.1038/s41388-018-0192-5.
Article CAS PubMed Google Scholar
Goyal S, Banga P, Meena N, et al. Prognostic significance of tumour budding, tumour-stroma ratio and desmoplastic stromal reaction in gall bladder carcinoma. J Clin Pathol. 2023;76(5):308–14. https://doi.org/10.1136/jclinpath-2021-207957.
Hu K, Miao L, Goodwin TJ, et al. Quercetin remodels the tumor microenvironment to improve the permeation, retention, and antitumor effects of nanoparticles. ACS Nano. 2017;11(5):4916–25. https://doi.org/10.1021/acsnano.7b01522.
Comments (0)