Abbasi Z, Bocianowski J (2021) Genotype by environment interaction for physiological traits in sugar beet (Beta vulgaris L.) parents and hybrids using additive main effects and multiplicative interaction model. Eur Food Res Technol 247:3063–3081. https://doi.org/10.1007/s00217-021-03861-4
Alvar-Beltrán J, Saturnin C, Grégoire B, Camacho JL, Dao A, Migraine JB, Marta AD (2023) Using AquaCrop as a decision-support tool for improved irrigation management in the Sahel region. Agric Water Manage 287:108430. https://doi.org/10.1016/j.agwat.2023.108430
Arata AF, Martínez M, Castañares E, Galizio RI, Fernández MD, Dinolfo MI (2024) The richness of Fusarium species in maize tassels and their relationship with Fusarium stalk rot. European J Plant Pathol 168:351–362. https://doi.org/10.1007/s10658-023-02760-6
Assaf JC, Mortada Z, Rezzoug SA, Maache-Rezzoug Z, Debs E, Louka N (2024) Comparative review on the production and purification of bioethanol from biomass: a focus on corn. Processes 12(5):1001. https://doi.org/10.3390/pr12051001
Azrai M, Aqil M, Efendi R, Andayani NN, Makkulawu AT, Iriany RN, Suarni YM, Suwardi ZB, Salim ST, Bahtiar P, Suwarno WB (2023) A comparative study on single and multiple trait selections of equatorial grown maize hybrids. Front Sustain Food Syst 7:1185102. https://doi.org/10.3389/fsufs.2023.1185102
Balestre M, Von Pinho RG, Souza JC, Oliveira RL (2009) Genotypic stability and adaptability in tropical maize based on AMMI and GGE biplot analysis. Genet Mol Res 8(4):1311–1322
Article PubMed CAS Google Scholar
Bocianowski J (2012a) A comparison of two methods to estimate additive-by-additive interaction of QTL effects by a simulation study. J Theor Biol 308:20–24. https://doi.org/10.1016/j.jtbi.2012.05.018
Bocianowski J (2012b) Analytical and numerical comparisons of two methods of estimation of additive × additive interaction of QTL effects. Sci Agric 69(4):240–246. https://doi.org/10.1590/S0103-90162012000400002
Bocianowski J (2012c) The use of weighted multiple linear regression to estimate QTL-by-QTL epistatic effects. Genet Mol Biol 35(4):802–809. https://doi.org/10.1590/S1415-47572012005000071
Article PubMed PubMed Central Google Scholar
Bocianowski J (2013a) Epistasis interaction of QTL effects as a genetic parameter influencing estimation of the genetic additive effect. Genet Mol Biol 36(1):93–100. https://doi.org/10.1590/S1415-47572013000100013
Article PubMed PubMed Central CAS Google Scholar
Bocianowski J (2013b) The new method of identification of extremes groups based on epistatic interaction effect using molecular markers. Indian J Agric Sci 83(12):1372–1376
Bocianowski J (2024) Using NGS technology and association mapping to identify candidate genes associated with fusarium stalk rot resistance. Genes 15(1):106. https://doi.org/10.3390/genes15010106
Article PubMed PubMed Central CAS Google Scholar
Bocianowski J, Krajewski P (2009) Comparison of the genetic additive effect estimators based on phenotypic observations and on molecular marker data. Euphytica 165:113–122. https://doi.org/10.1007/s10681-008-9770-x
Bocianowski J, Nowosad K (2015) Mixed linear model approaches in mapping QTLs with epistatic effects by a simulation study. Euphytica 202:459–467. https://doi.org/10.1007/s10681-014-1329-4
Bocianowski J, Prażak R (2022) Genotype by year interaction for selected quantitative traits in hybrid lines of Triticum aestivum L. with Aegilops kotschyi Boiss. and Ae. variabilis Eig. using the additive main effects and multiplicative interaction model. Euphytica 218(2):11. https://doi.org/10.1007/s10681-022-02967-4
Bocianowski J, Krajewski P, Kaczmarek Z (1999) Comparison of methods of choosing extreme doubled haploid lines for genetic parameter estimation. Colloquium Biometrycze 29:193–202
Bocianowski J, Szulc P, Nowosad K (2018) Soil tillage methods by years interaction for dry matter of plant yield of maize (Zea mays L.) using additive main effects and multiplicative interaction model. J Integr Agric 17(12):2836–2839. https://doi.org/10.1016/S2095-3119(18)62085-4
Bocianowski J, Księżak J, Nowosad K (2019a) Genotype by environment interaction for seeds yield in pea (Pisum sativum L.) using additive main effects and multiplicative interaction model. Euphytica 215:191. https://doi.org/10.1007/s10681-019-2515-1
Bocianowski J, Niemann J, Nowosad K (2019b) Genotype-by-environment interaction for seed quality traits in interspecific cross-derived Brassica lines using additive main effects and multiplicative interaction model. Euphytica 215:7. https://doi.org/10.1007/s10681-018-2328-7
Bocianowski J, Nowosad K, Szulc P (2019c) Soil tillage methods by years interaction for harvest index of maize (Zea mays L.) using additive main effects and multiplicative interaction model. Acta Agric Scand Sect B 69(1):75–81. https://doi.org/10.1080/09064710.2018.1502343
Bocianowski J, Liersch A, Nowosad K (2020a) Genotype by environment interaction for alkenyl glucosinolates content in winter oilseed rape (Brassica napus L.) using additive main effects and multiplicative interaction model. Curr Plant Biol 21:100137. https://doi.org/10.1016/j.cpb.2020.100137
Bocianowski J, Tratwal A, Nowosad K (2020b) Genotype by environment interaction for area under the disease-progress curve (AUDPC) value in spring barley using additive main effects and multiplicative interaction model. Australas Plant Pathol 49:525–529. https://doi.org/10.1007/s13313-020-00723-7
Bocianowski J, Nowosad K, Wróbel B, Szulc P (2021a) Identification of Associations between SSR Markers and Quantitative Traits of Maize (Zea mays L.). Agronomy 11(1):182. https://doi.org/10.3390/agronomy11010182
Bocianowski J, Radkowski A, Nowosad K, Radkowska I, Zieliński A (2021b) The impact of genotype-by-environment interaction on the dry matter yield and chemical composition in timothy (Phleum pratense L.) examined by using the additive main effects and multiplicative interaction model. Grass Forage Sci 76(4):463–484. https://doi.org/10.1111/gfs.12551
Bocianowski J, Tratwal A, Nowosad K (2021c) Genotype by environment interaction for main winter triticale varieties characteristics at two levels of technology using additive main effects and multiplicative interaction model. Euphytica 217:26. https://doi.org/10.1007/s10681-020-02756-x
Bocianowski J, Jakubowska M, Kowalska J (2022a) The interaction of different abiotic conditions on the value of the component traits of the technological yield of sugar beet. Euphytica 218(8):110. https://doi.org/10.1007/s10681-022-03070-4
Bocianowski J, Wielkopolan B, Jakubowska M (2022b) AMMI analysis of the effects of different insecticidal treatments against Agrotis spp. on the technological yield from sugar beet. Agriculture 12(2):157. https://doi.org/10.3390/agriculture12020157
Bocianowski J, Tomkowiak A, Bocianowska M, Sobiech A (2023) The use of DArTseq technology to identify markers related to the heterosis effects in selected traits in maize. Curr Issues Mol Biol 45(4):2644–2660. https://doi.org/10.3390/cimb45040173
Article PubMed PubMed Central CAS Google Scholar
Bocianowski J, Waligóra H, Majchrzak L (2024) Genotype by year interaction for selected traits in sweet maize (Zea maize L.) hybrids using AMMI model. Euphytica 220:89. https://doi.org/10.1007/s10681-024-03352-z
Brancourt-Hulmel M, Lecomte C (2003) Effect of environmental varieties on genotype x environment interaction of winter wheat. A comparison of biadditive factorial regression to AMMI. Crop Sci 43(2):608–617. https://doi.org/10.2135/cropsci2003.6080
Chávez-Dulanto PN, Thiry AAA, Glorio-Paulet P, Vögler O, Carvalho FP (2021) Increasing the impact of science and technology to provide more people with healthier and safer food. Food Energy Secur 10:e259. https://doi.org/10.1002/fes3.259
Choo TM, Reinbergs E (1982) Estimation of the number of genes in doubled haploid populations of barley (Hordeum vulgare). Can J Genet Cytol 24:337–341. https://doi.org/10.1139/g82-035
Cornelius PL (1993) Statistical tests and retention of terms in the additive main effects and multiplicative interaction model for cultivar trials. Crop Sci 33:1186–1193. https://doi.org/10.2135/cropsci1993.0011183X003300060016x
Crossa J, Vargas M, van Eeuwijk F, Jiang C, Edmeades GO, Hoisington D (1999) Interpreting genotype × environment interaction in tropical maize using linked molecular markers and environmental covariables. Theor Appl Genet 99:611–625. https://doi.org/10.1007/s001220051276
Comments (0)