Zegers-Hochschild F, Adamson GD, de Mouzon J, Ishihara O, Mansour R, Nygren K, Sullivan E, Vanderpoel S (2009) International Committee for Monitoring Assisted Reproductive Technology; World Health Organization International Committee for Monitoring Assisted Reproductive Technology (ICMART) and the World Health Organization (WHO) Revised Glossary of ART Terminology, 2009. Fertil Steril 92:1520–1524. https://doi.org/10.1016/j.fertnstert.2009.09.009
Article CAS PubMed Google Scholar
Kuczyński W, Kurzawa R, Oszukowski P, Pawelczyk L, Poreba R, Radowicki S, Szamatowicz M, Wołczyński S (2012) Polish Gynecological Society and Polish Society for Reproductive Medicine [Polish Gynecological Society and Polish Society for Reproductive Medicine recommendations for the diagnosis and treatment of infertility]. Ginekol Pol 83:149–154
Okutman O, Rhouma MB, Benkhalifa M, Muller J, Viville S (2018) Genetic Evaluation of patients with non-syndromic male infertility. J Assist Reprod Genet 35:1939–1951. https://doi.org/10.1007/s10815-018-1301-7
Article PubMed PubMed Central Google Scholar
A. Jungwirth; T. Diemer; Z. Kopa; , C. Krausz; H. Tournaye EAU guidelines on male infertility 2017, European Association of Urology 2017; ISBN 978–90–79754–80–9.
Houston BJ, Riera-Escamilla A, Wyrwoll MJ, Salas-Huetos A, Xavier MJ, Nagirnaja L, Friedrich C, Conrad DF, Aston KI, Krausz C et al (2021) A systematic review of the validated monogenic causes of human male infertility: 2020 update and a discussion of emerging gene–disease relationships. Hum Reprod Update 28:15–29. https://doi.org/10.1093/humupd/dmab030
Article CAS PubMed PubMed Central Google Scholar
Tüttelmann F, Ruckert C, Röpke A (2018) Disorders of spermatogenesis: perspectives for novel genetic diagnostics after 20 years of unchanged routine. Med Gen 30:12–20. https://doi.org/10.1007/s11825-018-0181-7
Hiort O, Holterhus P-M (2003) Androgen insensitivity and male infertility. Int J Androl 26:16–20. https://doi.org/10.1046/j.1365-2605.2003.00369.x
Article CAS PubMed Google Scholar
Miraoui H, Dwyer AA, Sykiotis GP, Plummer L, Chung W, Feng B, Beenken A, Clarke J, Pers TH, Dworzynski P et al (2013) Mutations in FGF17, IL17RD, DUSP6, SPRY4, and FLRT3 Are identified in individuals with congenital hypogonadotropic hypogonadism. The American Journal of Human Genetics 92:725–743. https://doi.org/10.1016/j.ajhg.2013.04.008
Article CAS PubMed Google Scholar
Sybert VP, McCauley E (2004) Turner’s syndrome. N Engl J Med 351(12):1227–1238. https://doi.org/10.1056/NEJMra030360
Article CAS PubMed Google Scholar
Nieschlag E, Vorona E (2014) Klinefelter syndrome: more than hypogonadism. Metabolism 63(4):463–471. https://doi.org/10.1016/j.metabol.2017.09.017
Krausz C, Costa PN, Wilke M, Tüttelmann F (2024) EAA/EMQN best practice guidelines for molecular diagnosis of Y-chromosomal microdeletions: State of the art 2023. Andrology 3:487–504. https://doi.org/10.1111/andr.13514
Sykiotis GP, Plummer L, Hughes VA, Au M, Durrani S, Nayak-Young S, Dwyer AA, Quinton R, Hall JE, Gusella JF et al (2010) Oligogenic basis of isolated gonadotropin-releasing hormone deficiency. Proc Natl Acad Sci U S A 107:15140–15144. https://doi.org/10.1073/pnas.1009622107
Article PubMed PubMed Central Google Scholar
Pitteloud N, Quinton R, Pearce S, Raivio T, Acierno J, Dwyer A, Plummer L, Hughes V, Seminara S, Cheng Y-Z et al (2007a) Digenic mutations account for variable phenotypes in idiopathic hypogonadotropic hypogonadism. J Clin Invest 117:457–463. https://doi.org/10.1172/JCI29884
Article CAS PubMed PubMed Central Google Scholar
Cassatella D, Howard SR, Acierno JS, Xu C, Papadakis GE, Santoni FA, Dwyer AA, Santini S, Sykiotis GP, Chambion C et al (2018) Congenital hypogonadotropic hypogonadism and constitutional delay of growth and puberty have distinct genetic architectures. Eur J Endocrinol 178:377–388. https://doi.org/10.1530/EJE-17-0568
Article CAS PubMed PubMed Central Google Scholar
Dodé C, Levilliers J, Dupont J-M, De Paepe A, Le Dû N, Soussi-Yanicostas N, Coimbra RS, Delmaghani S, Compain-Nouaille S, Baverel F et al (2003) Loss-of-function mutations in FGFR1 cause autosomal dominant Kallmann syndrome. Nat Genet 33:463–465. https://doi.org/10.1038/ng1122
Article CAS PubMed Google Scholar
Falardeau J, Chung WCJ, Beenken A, Raivio T, Plummer L, Sidis Y, Jacobson-Dickman EE, Eliseenkova AV, Ma J, Dwyer A et al (2008) Decreased FGF8 signaling causes deficiency of gonadotropin-releasing hormone in humans and mice. J Clin Invest 118:2822–2831. https://doi.org/10.1172/JCI34538
Article CAS PubMed PubMed Central Google Scholar
Fraietta R, Zylberstejn DS, Esteves SC (2013) Hypogonadotropic hypogonadism revisited. Clinics (Sao Paulo) 68(Suppl 1):81–88. https://doi.org/10.6061/clinics/2013(sup01)09
Quaynor SD, Kim H-G, Cappello EM, Williams T, Chorich LP, Bick DP, Sherins RJ, Layman LC (2011) The prevalence of digenic mutations in patients with normosmic hypogonadotropic hypogonadism and Kallmann syndrome. Fertil Steril 96:1424-1430.e6. https://doi.org/10.1016/j.fertnstert.2011.09.046
Article CAS PubMed PubMed Central Google Scholar
Kałużna M, Budny B, Rabijewski M, Kałużny J, Dubiel A, Trofimiuk-Müldner M, Wrotkowska E, Hubalewska-Dydejczyk A, Ruchała M, Ziemnicka K (2021) Defects in GnRH neuron migration/development and hypothalamic-pituitary signaling impact clinical variability of Kallmann syndrome. Genes 12:868. https://doi.org/10.3390/genes12060868
Article CAS PubMed PubMed Central Google Scholar
Villanueva C, Jacobson-Dickman E, Xu C, Manouvrier S, Dwyer AA, Sykiotis GP, Beenken A, Liu Y, Tommiska J, Hu Y et al (2015) Congenital hypogonadotropic hypogonadism with split hand/foot malformation: a clinical entity with a high frequency of FGFR1 mutations. Genet Med 17:651–659. https://doi.org/10.1038/gim.2014.166
Article CAS PubMed Google Scholar
Dam AHDM, Koscinski I, Kremer JAM, Moutou C, Jaeger A-S, Oudakker AR, Tournaye H, Charlet N, Lagier-Tourenne C, van Bokhoven H et al (2007) Homozygous mutation in SPATA16 is associated with male infertility in human globozoospermia. Am J Hum Genet 81:813–820. https://doi.org/10.1086/521314
Article CAS PubMed PubMed Central Google Scholar
Aghaei S, Parvizpour S, Farrokhi E, Molavi N, Hoseinzadeh M, Tabatabaiefar MA (2022) Characterization of a novel androgen receptor gene variant identified in an Iranian family with complete androgen insensitivity syndrome (CAIS): a molecular dynamics simulation study. J Biomol Structure Dynamics 1–15. https://doi.org/10.1080/07391102.2022.2148125
Bevan CL, Hughes IA, Patterson MN (1997) Wide variation in androgen receptor dysfunction in complete androgen insensitivity syndrome. J Steroid Biochem Mol Biol 61:19–26. https://doi.org/10.1016/s0960-0760(97)00001-0
Article CAS PubMed Google Scholar
Hellmann P, Christiansen P, Johannsen TH, Main KM, Duno M, Juul A (2012) Male patients with partial androgen insensitivity syndrome: a longitudinal follow-up of growth, reproductive hormones and the development of gynaecomastia. Arch Dis Child 97:403–409. https://doi.org/10.1136/archdischild-2011-300584
Lorenzi D, Fernández C, Bilinski M, Fabbro M, Galain M, Menazzi S, Miguens M, Perassi PN, Fulco MF, Kopelman S et al (2020) First custom next-generation sequencing infertility panel in Latin America: Design and First Results. JBRA Assisted Reproduction. https://doi.org/10.5935/1518-0557.20190065
Article PubMed PubMed Central Google Scholar
Kalfa N, Philibert P, Werner R, Audran F, Bashamboo A, Lehors H, Haddad M, Guys JM, Reynaud R, Alessandrini P et al (2013) Minor hypospadias: the “tip of the iceberg” of the partial androgen insensitivity syndrome. PLoS ONE 8:e61824. https://doi.org/10.1371/journal.pone.0061824
Article CAS PubMed PubMed Central Google Scholar
Faienza MF, Chiarito M, Baldinotti F, Canale D, Savino C, Paradies G, Corica D, Romeo C, Tyutyusheva N, Caligo MA et al (2019) NR5A1 gene variants: variable phenotypes, new variants, different outcomes. Sex Dev 13:258–263. https://doi.org/10.1159/00050741
Article CAS PubMed Google Scholar
Domenice S, Machado AZ, Ferreira FM, Ferraz-de-Souza B, Lerario AM, Lin L, Nishi MY, Gomes NL, da Silva TE et al (2016) Wide spectrum of NR5A1-related phenotypes in 46, XY and 46, XX individuals. Birth Defects Res C Embryo Today 108:309–320. https://doi.org/10.1002/bdrc.21145
Comments (0)