Federation IJUHWDO (2021) IDF diabetes atlas, 10th edn, Brussels Belgium
Naveen J, Baskaran V (2018) Antidiabetic plant-derived nutraceuticals: a critical review. Eur J Nutr 57:1275–1299. https://doi.org/10.1007/s00394-017-1552-6
Article CAS PubMed Google Scholar
Khalid M, Petroianu G, Adem A (2022) Advanced glycation end products and diabetes mellitus: mechanisms and perspectives. Biomolecules 12:542. https://doi.org/10.3390/biom12040542
Article CAS PubMed PubMed Central Google Scholar
Nowotny K, Jung T, Höhn A, Weber D, Grune T (2015) Advanced glycation end products and oxidative stress in type 2 diabetes mellitus. Biomolecules 5:194–222. https://doi.org/10.3390/biom5010194
Article CAS PubMed PubMed Central Google Scholar
Ćorković I, Gašo-Sokač D, Pichler A, Šimunović J, Kopjar M (2022) Dietary polyphenols as natural inhibitors of α-amylase and α-glucosidase. Life 12:1692. https://doi.org/10.3390/life12111692
Article CAS PubMed PubMed Central Google Scholar
Khan M, Liu H, Wang J, Sun B (2020) Inhibitory effect of phenolic compounds and plant extracts on the formation of advance glycation end products: a comprehensive review. Food Res Int 130:108933. https://doi.org/10.1016/j.foodres.2019.108933
Article CAS PubMed Google Scholar
Bailey C, Christian KR, Pradhan S, Nair MG, Christian OE (2011) Anti-inflammatory and antioxidant activities of Coccoloba uvifera (Seagrapes). Curr Top Phytochem 10:55–60
Ramos-Hernández JA, Calderón-Santoyo M, Burgos-Hernández A, García-Romo JS, Navarro-Ocaña A, Burboa-Zazueta MG, Sandoval-Petris E, Ragazzo-Sánchez JA (2021) Antimutagenic, antiproliferative and antioxidant properties of sea grape leaf extract fractions (Coccoloba uvifera L.). Anti-Cancer Agents Med Chem 21:2250–2257. https://doi.org/10.2174/1871520621999210104201242
Mohamed FA, Sayed RH, Khalil MNA, Salem MA, El SenousyEl-Halawany ASAM (2024) Ameliorative activity of standardized Coccoloba uvifera leaves extract against streptozotocin-induced diabetic rats via activation of IRS-1/PI3K/AKT/GLUT2 pathway in liver. Future J Pharm Sci 10:132. https://doi.org/10.1186/s43094-024-00707-0
El-Kawe BJCT (2019) A pharmacognostical study of Coccoloba peltata Schott family polygonaceae, Master thesis
Mohamed FA, Khalil MN, Salem MA, El Senousy AS, El-Halawany AMJEJOC (2024) Pharmacological potentials of the genus Coccoloba and its phytochemical constituents: an updated review since 2020. Egypt J Chem 67:203. https://doi.org/10.21608/ejchem.2024.311546.10181
Haggag EG, Abdelhady MI, Kamal AM (2013) Phenolic content of Ruprechtia salicifolia leaf and its immunomodulatory, anti-inflammatory, anticancer and antibacterial activity. J Pharm Res 6:696–703. https://doi.org/10.1016/j.jopr.2013.07.015
Bedair M, Sumner LW (2008) Current and emerging mass-spectrometry technologies for metabolomics. Trends Analyt Chem 27:238–250. https://doi.org/10.1016/j.trac.2008.01.006
Grata E, Boccard J, Guillarme D, Glauser G, Carrupt P-A, Farmer EE, Wolfender J-L, Rudaz SJJOCB (2008) UPLC–TOF-MS for plant metabolomics: a sequential approach for wound marker analysis in Arabidopsis thaliana. J Chromatogr B 871:261–270. https://doi.org/10.1016/j.jchromb.2008.04.021
Salem MA, Perez De Souza L, Serag A, Fernie AR, Farag MA, Ezzat SM, Alseekh S (2020) Metabolomics in the context of plant natural products research: from sample preparation to metabolite analysis. Metabolites 10:37. https://doi.org/10.3390/metabo10010037
Article CAS PubMed PubMed Central Google Scholar
Ainsworth EA, Gillespie KM (2007) Estimation of total phenolic content and other oxidation substrates in plant tissues using Folin-Ciocalteu reagent. Nat prot 2:875–877. https://doi.org/10.1038/nprot.2007.102
Albino AM, Gomes DL, Santos AH, Malta GD, Oliveira DH, Souto LF, Teles CB, Fialho SN, Silva MA, Araújo NF, Bay M (2024) Cytotoxicity evaluation and dereplication of flavonoids-guided by antioxidant activity and total phenolics content from ephedrantus amazonicus leaves. Braz Arch Biol Technol 67:e24231132
Pękal A, Pyrzynska K (2014) Evaluation of aluminium complexation reaction for flavonoid content assay. Food Anal Method 7:1776–1782. https://doi.org/10.1007/s12161-014-9814-x
Saeed N, Khan MR, Shabbir M (2012) Antioxidant activity, total phenolic and total flavonoid contents of whole plant extracts Torilis leptophylla L. BMC Complem Altern Med 12:1–12. https://doi.org/10.1186/1472-6882-12-221
Faitanin RD, Gomes JV, Rodrigues PM, de Menezes LF, Neto ÁC, Gonçalves RC, Kitagawa RR, Silveira D, Jamal CM (2018) Chemical study and evaluation of antioxidant activity and α-glucosidase inhibition of Myrciaria strigipes O. Berg (Myrtaceae). J Appl Pharm Sci 8(3):120–125. https://doi.org/10.7324/JAPS.2018.8317
Sunil D, Isloor AM, Shetty P, Satyamoorthy K, Prasad AB (2010) 6-[3-(4-Fluorophenyl)-1H-pyrazol-4-yl]-3-[(2-naphthyloxy) methyl][1, 2, 4] triazolo [3, 4-b][1, 3, 4] thiadiazole as a potent antioxidant and an anticancer agent induces growth inhibition followed by apoptosis in HepG2 cells. Arab J Chem 3:211–217. https://doi.org/10.1016/j.arabjc.2010.06.002
Justino AB, Miranda NC, Franco RR, Martins MM, Da Silva NM, Espindola FS (2018) Annona muricata Linn. leaf as a source of antioxidant compounds with in vitro antidiabetic and inhibitory potential against α-amylase, α-glucosidase, lipase, non-enzymatic glycation and lipid peroxidation. Biomed Pharmacother 100:83–92. https://doi.org/10.1016/j.biopha.2018.01.172
Article CAS PubMed Google Scholar
Benzie IF, Devaki M, Trends CR, and Applications (2018) The ferric reducing/antioxidant power (FRAP) assay for non‐enzymatic antioxidant capacity: concepts, procedures, limitations and applications, In: Measurement of antioxidant activity capacity, pp 77–106. https://doi.org/10.1002/9781119135388.ch5
Gutiérrez-Grijalva EP, Antunes-Ricardo M, Acosta-Estrada BA, Gutiérrez-Uribe JA, Heredia JB (2019) Cellular antioxidant activity and in vitro inhibition of α-glucosidase, α-amylase and pancreatic lipase of oregano polyphenols under simulated gastrointestinal digestion. Food Res Int 116:676–686. https://doi.org/10.1016/j.foodres.2018.08.096
Article CAS PubMed Google Scholar
Kordel M, Schmid R (1991) Inhibition of the lipase from Pseudomonas spec. ATCC 21808 by diethyl p-nitrophenylphosphate. In: Alberghina L, Schmid RD (eds) Hints for one buried active site for lipolytic and esterolytic activity, Verger, pp 385–387
Alam MM, Ahmad I, Naseem I (2015) Inhibitory effect of quercetin in the formation of advance glycation end products of human serum albumin: an in vitro and molecular interaction study. Int J Biol Macromol 79:336–343. https://doi.org/10.1016/j.ijbiomac.2015.05.004
Article CAS PubMed Google Scholar
Wang W, Yagiz Y, Buran TJ, Do Nascimento Nunes C, Gu L (2011) Phytochemicals from berries and grapes inhibited the formation of advanced glycation end-products by scavenging reactive carbonyls. Food Res Int 44:2666–2673. https://doi.org/10.1016/j.foodres.2011.05.022
Merghany RM, Salem MA, Ezzat SM, Moustafa SF, El-Sawi SA, Meselhy MRJSR (2024) A comparative UPLC-orbitrap-MS-based metabolite profiling of three Pelargonium species cultivated in Egypt. Sci Rep 14:22765. https://doi.org/10.1038/s41598-024-72153-0
Article CAS PubMed PubMed Central Google Scholar
Salem MA, Michel HE, Ezzat MI, Okba MM, El-Desoky AM, Mohamed SO, Ezzat SMJM (2020) Optimization of an extraction solvent for angiotensin-converting enzyme inhibitors from Hibiscus sabdariffa L. based on its UPLC-MS/MS metabolic profiling. Molecules 25:2307. https://doi.org/10.3390/molecules25102307
Article CAS PubMed PubMed Central Google Scholar
Chambers MC, Maclean B, Burke R, Amodei D, Ruderman DL, Neumann S, Gatto L, Fischer B, Pratt B, Egertson JJNB (2012) A cross-platform toolkit for mass spectrometry and proteomics. Nat Biotechnol 30:918–920. https://doi.org/10.1038/nbt.2377
Article CAS PubMed PubMed Central Google Scholar
Pluskal T, Castillo S, Villar-Briones A, Orešič M (2010) MZmine 2: modular framework for processing, visualizing, and analyzing mass spectrometry-based molecular profile data. BMC Bioinform 11:1–11. https://doi.org/10.1186/1471-2105-11-395
Pang Z, Chong J, Zhou G, De Lima Morais DA, Chang L, Barrette M, Gauthier C, Jacques P-É, Li S, Xia J (2021) MetaboAnalyst 5.0: narrowing the gap between raw spectra and functional insights. Nucleic Acids Res 49:W388–W396. https://doi.org/10.1093/nar/gkab382
Comments (0)