Unveiling metabolome heterogeneity in three species from Coccoloba and Ruprechtia through multiple approaches of UPLC/HRMS and chemometric analysis in relation to antidiabetic, antioxidant and antiglycation activities

Federation IJUHWDO (2021) IDF diabetes atlas, 10th edn, Brussels Belgium

Naveen J, Baskaran V (2018) Antidiabetic plant-derived nutraceuticals: a critical review. Eur J Nutr 57:1275–1299. https://doi.org/10.1007/s00394-017-1552-6

Article  CAS  PubMed  Google Scholar 

Khalid M, Petroianu G, Adem A (2022) Advanced glycation end products and diabetes mellitus: mechanisms and perspectives. Biomolecules 12:542. https://doi.org/10.3390/biom12040542

Article  CAS  PubMed  PubMed Central  Google Scholar 

Nowotny K, Jung T, Höhn A, Weber D, Grune T (2015) Advanced glycation end products and oxidative stress in type 2 diabetes mellitus. Biomolecules 5:194–222. https://doi.org/10.3390/biom5010194

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ćorković I, Gašo-Sokač D, Pichler A, Šimunović J, Kopjar M (2022) Dietary polyphenols as natural inhibitors of α-amylase and α-glucosidase. Life 12:1692. https://doi.org/10.3390/life12111692

Article  CAS  PubMed  PubMed Central  Google Scholar 

Khan M, Liu H, Wang J, Sun B (2020) Inhibitory effect of phenolic compounds and plant extracts on the formation of advance glycation end products: a comprehensive review. Food Res Int 130:108933. https://doi.org/10.1016/j.foodres.2019.108933

Article  CAS  PubMed  Google Scholar 

Bailey C, Christian KR, Pradhan S, Nair MG, Christian OE (2011) Anti-inflammatory and antioxidant activities of Coccoloba uvifera (Seagrapes). Curr Top Phytochem 10:55–60

CAS  Google Scholar 

Ramos-Hernández JA, Calderón-Santoyo M, Burgos-Hernández A, García-Romo JS, Navarro-Ocaña A, Burboa-Zazueta MG, Sandoval-Petris E, Ragazzo-Sánchez JA (2021) Antimutagenic, antiproliferative and antioxidant properties of sea grape leaf extract fractions (Coccoloba uvifera L.). Anti-Cancer Agents Med Chem 21:2250–2257. https://doi.org/10.2174/1871520621999210104201242

Article  CAS  Google Scholar 

Mohamed FA, Sayed RH, Khalil MNA, Salem MA, El SenousyEl-Halawany ASAM (2024) Ameliorative activity of standardized Coccoloba uvifera leaves extract against streptozotocin-induced diabetic rats via activation of IRS-1/PI3K/AKT/GLUT2 pathway in liver. Future J Pharm Sci 10:132. https://doi.org/10.1186/s43094-024-00707-0

Article  Google Scholar 

El-Kawe BJCT (2019) A pharmacognostical study of Coccoloba peltata Schott family polygonaceae, Master thesis

Mohamed FA, Khalil MN, Salem MA, El Senousy AS, El-Halawany AMJEJOC (2024) Pharmacological potentials of the genus Coccoloba and its phytochemical constituents: an updated review since 2020. Egypt J Chem 67:203. https://doi.org/10.21608/ejchem.2024.311546.10181

Article  Google Scholar 

Haggag EG, Abdelhady MI, Kamal AM (2013) Phenolic content of Ruprechtia salicifolia leaf and its immunomodulatory, anti-inflammatory, anticancer and antibacterial activity. J Pharm Res 6:696–703. https://doi.org/10.1016/j.jopr.2013.07.015

Article  CAS  Google Scholar 

Bedair M, Sumner LW (2008) Current and emerging mass-spectrometry technologies for metabolomics. Trends Analyt Chem 27:238–250. https://doi.org/10.1016/j.trac.2008.01.006

Article  CAS  Google Scholar 

Grata E, Boccard J, Guillarme D, Glauser G, Carrupt P-A, Farmer EE, Wolfender J-L, Rudaz SJJOCB (2008) UPLC–TOF-MS for plant metabolomics: a sequential approach for wound marker analysis in Arabidopsis thaliana. J Chromatogr B 871:261–270. https://doi.org/10.1016/j.jchromb.2008.04.021

Article  CAS  Google Scholar 

Salem MA, Perez De Souza L, Serag A, Fernie AR, Farag MA, Ezzat SM, Alseekh S (2020) Metabolomics in the context of plant natural products research: from sample preparation to metabolite analysis. Metabolites 10:37. https://doi.org/10.3390/metabo10010037

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ainsworth EA, Gillespie KM (2007) Estimation of total phenolic content and other oxidation substrates in plant tissues using Folin-Ciocalteu reagent. Nat prot 2:875–877. https://doi.org/10.1038/nprot.2007.102

Article  CAS  Google Scholar 

Albino AM, Gomes DL, Santos AH, Malta GD, Oliveira DH, Souto LF, Teles CB, Fialho SN, Silva MA, Araújo NF, Bay M (2024) Cytotoxicity evaluation and dereplication of flavonoids-guided by antioxidant activity and total phenolics content from ephedrantus amazonicus leaves. Braz Arch Biol Technol 67:e24231132

Article  CAS  Google Scholar 

Pękal A, Pyrzynska K (2014) Evaluation of aluminium complexation reaction for flavonoid content assay. Food Anal Method 7:1776–1782. https://doi.org/10.1007/s12161-014-9814-x

Article  Google Scholar 

Saeed N, Khan MR, Shabbir M (2012) Antioxidant activity, total phenolic and total flavonoid contents of whole plant extracts Torilis leptophylla L. BMC Complem Altern Med 12:1–12. https://doi.org/10.1186/1472-6882-12-221

Article  CAS  Google Scholar 

Faitanin RD, Gomes JV, Rodrigues PM, de Menezes LF, Neto ÁC, Gonçalves RC, Kitagawa RR, Silveira D, Jamal CM (2018) Chemical study and evaluation of antioxidant activity and α-glucosidase inhibition of Myrciaria strigipes O. Berg (Myrtaceae). J Appl Pharm Sci 8(3):120–125. https://doi.org/10.7324/JAPS.2018.8317

Article  CAS  Google Scholar 

Sunil D, Isloor AM, Shetty P, Satyamoorthy K, Prasad AB (2010) 6-[3-(4-Fluorophenyl)-1H-pyrazol-4-yl]-3-[(2-naphthyloxy) methyl][1, 2, 4] triazolo [3, 4-b][1, 3, 4] thiadiazole as a potent antioxidant and an anticancer agent induces growth inhibition followed by apoptosis in HepG2 cells. Arab J Chem 3:211–217. https://doi.org/10.1016/j.arabjc.2010.06.002

Article  CAS  Google Scholar 

Justino AB, Miranda NC, Franco RR, Martins MM, Da Silva NM, Espindola FS (2018) Annona muricata Linn. leaf as a source of antioxidant compounds with in vitro antidiabetic and inhibitory potential against α-amylase, α-glucosidase, lipase, non-enzymatic glycation and lipid peroxidation. Biomed Pharmacother 100:83–92. https://doi.org/10.1016/j.biopha.2018.01.172

Article  CAS  PubMed  Google Scholar 

Benzie IF, Devaki M, Trends CR, and Applications (2018) The ferric reducing/antioxidant power (FRAP) assay for non‐enzymatic antioxidant capacity: concepts, procedures, limitations and applications, In: Measurement of antioxidant activity capacity, pp 77–106. https://doi.org/10.1002/9781119135388.ch5

Gutiérrez-Grijalva EP, Antunes-Ricardo M, Acosta-Estrada BA, Gutiérrez-Uribe JA, Heredia JB (2019) Cellular antioxidant activity and in vitro inhibition of α-glucosidase, α-amylase and pancreatic lipase of oregano polyphenols under simulated gastrointestinal digestion. Food Res Int 116:676–686. https://doi.org/10.1016/j.foodres.2018.08.096

Article  CAS  PubMed  Google Scholar 

Kordel M, Schmid R (1991) Inhibition of the lipase from Pseudomonas spec. ATCC 21808 by diethyl p-nitrophenylphosphate. In: Alberghina L, Schmid RD (eds) Hints for one buried active site for lipolytic and esterolytic activity, Verger, pp 385–387

Alam MM, Ahmad I, Naseem I (2015) Inhibitory effect of quercetin in the formation of advance glycation end products of human serum albumin: an in vitro and molecular interaction study. Int J Biol Macromol 79:336–343. https://doi.org/10.1016/j.ijbiomac.2015.05.004

Article  CAS  PubMed  Google Scholar 

Wang W, Yagiz Y, Buran TJ, Do Nascimento Nunes C, Gu L (2011) Phytochemicals from berries and grapes inhibited the formation of advanced glycation end-products by scavenging reactive carbonyls. Food Res Int 44:2666–2673. https://doi.org/10.1016/j.foodres.2011.05.022

Article  CAS  Google Scholar 

Merghany RM, Salem MA, Ezzat SM, Moustafa SF, El-Sawi SA, Meselhy MRJSR (2024) A comparative UPLC-orbitrap-MS-based metabolite profiling of three Pelargonium species cultivated in Egypt. Sci Rep 14:22765. https://doi.org/10.1038/s41598-024-72153-0

Article  CAS  PubMed  PubMed Central  Google Scholar 

Salem MA, Michel HE, Ezzat MI, Okba MM, El-Desoky AM, Mohamed SO, Ezzat SMJM (2020) Optimization of an extraction solvent for angiotensin-converting enzyme inhibitors from Hibiscus sabdariffa L. based on its UPLC-MS/MS metabolic profiling. Molecules 25:2307. https://doi.org/10.3390/molecules25102307

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chambers MC, Maclean B, Burke R, Amodei D, Ruderman DL, Neumann S, Gatto L, Fischer B, Pratt B, Egertson JJNB (2012) A cross-platform toolkit for mass spectrometry and proteomics. Nat Biotechnol 30:918–920. https://doi.org/10.1038/nbt.2377

Article  CAS  PubMed  PubMed Central  Google Scholar 

Pluskal T, Castillo S, Villar-Briones A, Orešič M (2010) MZmine 2: modular framework for processing, visualizing, and analyzing mass spectrometry-based molecular profile data. BMC Bioinform 11:1–11. https://doi.org/10.1186/1471-2105-11-395

Article  CAS  Google Scholar 

Pang Z, Chong J, Zhou G, De Lima Morais DA, Chang L, Barrette M, Gauthier C, Jacques P-É, Li S, Xia J (2021) MetaboAnalyst 5.0: narrowing the gap between raw spectra and functional insights. Nucleic Acids Res 49:W388–W396. https://doi.org/10.1093/nar/gkab382

Article  CAS 

Comments (0)

No login
gif