Activated Platelet and Platelet-Derived Microparticle Levels: A Comparative Study between Apheresis Platelet Concentrates and Pooled Platelet-Rich Plasma Platelet Concentrates

Sweeney JD, Kouttab NM, Holme S, Kurtis JD, Cheves TA, Nelson EJ (2004) Prestorage pooled whole-blood-derived leukoreduced platelets stored for seven days, preserve acceptable quality and do not show evidence of a mixed lymphocyte reaction. Transfusion 44(8):1212–1219

Article  PubMed  Google Scholar 

Pietersz RN (2009) Pooled platelet concentrates: an alternative to single donor apheresis platelets? Transfus Apher Sci 41(2):115–119

Article  CAS  PubMed  Google Scholar 

Noulsri E, Udomwinijsilp P, Lerdwana S, Chongkolwatana V, Permpikul P (2017) Differences in levels of platelet-derived microparticles in platelet components prepared using the platelet rich plasma, buffy coat, and apheresis procedures. Transfus Apher Sci 56(2):135–140

Article  PubMed  Google Scholar 

Gao M, Zhang B, Zhang Y, Chen Y, Xiong J, Wang J et al (2018) The effects of apheresis, storage time, and leukofiltration on microparticle formation in apheresis platelet products. Transfusion 58(10):2388–2394

Article  CAS  PubMed  Google Scholar 

Nollet KE, Saito S, Ono T, Ngoma A, Ohto H (2013) Microparticle formation in apheresis platelets is not affected by three leukoreduction filters. Transfusion 53(10):2293–2298

Article  CAS  PubMed  Google Scholar 

Noulsri E (2020) Quantitation of cell-derived microparticles in blood products and its potential applications in transfusion laboratories. Lab Med 51(5):452–459

Article  PubMed  Google Scholar 

Marcoux G, Duchez A-C, Rousseau M, Lévesque T, Boudreau LH, Thibault L et al (2017) Microparticle and mitochondrial release during extended storage of different types of platelet concentrates. Platelets 28(3):272–280

Article  CAS  PubMed  Google Scholar 

Maurer-Spurej E, Larsen R, Labrie A, Heaton A, Chipperfield K (2016) Microparticle content of platelet concentrates is predicted by donor microparticles and is altered by production methods and stress. Transfus Apher Sci 55(1):35–43

Article  PubMed  Google Scholar 

Yun SH, Sim EH, Goh RY, Park JI, Han JY (2016) Platelet activation: the mechanisms and potential biomarkers. Biomed Res Int 2016:9060143

Article  PubMed  PubMed Central  Google Scholar 

Ng MSY, Tung J-P, Fraser JF (2018) Platelet storage lesions: what more do we know now? Transfus Med Rev 32(3):144–154

Article  Google Scholar 

Morel O, Jesel L, Freyssinet J-M, Toti F (2011) Cellular mechanisms underlying the formation of circulating microparticles. Arterioscler Thromb Vasc Biol 31(1):15–26

Article  CAS  PubMed  Google Scholar 

van der Pol E, Böing AN, Harrison P, Sturk A, Nieuwland R (2012) Classification, functions, and clinical relevance of extracellular vesicles. Pharmacol Rev 64(3):676–705

Article  PubMed  Google Scholar 

Bal L, Ederhy S, Di Angelantonio E, Toti F, Zobairi F, Dufaitre G et al (2010) Circulating procoagulant microparticles in acute pulmonary embolism: a case–control study. Int J Cardiol 145(2):321–322

Article  PubMed  Google Scholar 

Esmaeili MA, Yari F, Amini A, Rezvani MR (2016) The effect of cell derived microparticles in transfusion medicine and adaptive immune system. Arch Med Lab Sci 2(1):29–35

Google Scholar 

Boomgaard MN, Gouwerok CW, Palfenier CH, Pankalla-Blandeau IE, Veldman HA, de Korte D et al (1995) Pooled platelet concentrates prepared by the platelet-rich-plasma method and filtered with three different filters and stored for 8 days. Vox Sang 68(2):82–89

CAS  PubMed  Google Scholar 

Ghasemzadeh M, Hosseini E, Roudsari ZO, Zadkhak P (2018) Intraplatelet reactive oxygen species (ROS) correlate with the shedding of adhesive receptors, microvesiculation and platelet adhesion to collagen during storage: does endogenous ROS generation downregulate platelet adhesive function? Thromb Res 163:153–161

Article  CAS  PubMed  Google Scholar 

Hosseini E, Solouki A, Haghshenas M, Ghasemzadeh M, Schoenwaelder SM (2022) Agitation-dependent biomechanical forces modulate GPVI receptor expression and platelet adhesion capacity during storage. Thromb J 20(1):3

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sloand E, Yu M, Klein H (1996) Comparison of random-donor platelet concentrates prepared from whole blood units and platelets prepared from single‐donor apheresis collections. Transfusion 36(11–12):955–959

Article  CAS  PubMed  Google Scholar 

Li M, Zhao Y, Chen X, Du X, Luo Y, Li Y et al (2024) Comparative analysis of the quality of platelet concentrates produced by apheresis procedures, platelet rich plasma, and buffy coat. Transfusion 64(2):367–379

Article  CAS  PubMed  Google Scholar 

Schrezenmeier H, Seifried E (2010) Buffy-coat-derived pooled platelet concentrates and apheresis platelet concentrates: which product type should be preferred? Vox Sang 99(1):1–15

Article  CAS  PubMed  Google Scholar 

Sut C, Tariket S, Aloui C, Arthaud CA, Eyraud MA, Fagan J et al (2019) Soluble CD40L and CD62P levels differ in single-donor apheresis platelet concentrates and buffy coat–derived pooled platelet concentrates. Transfusion 59(1):16–20

Article  CAS  PubMed  Google Scholar 

Kumar R, Dhawan HK, Sharma RR, Kaur J (2021) Buffy coat pooled platelet concentrate: a new age platelet component. Asian J Transfus Sci 15(2):125–132

Article  CAS  PubMed  PubMed Central  Google Scholar 

Vandenbroeke T, Gloor C, Wingfield T, Leite C, Carr K, Turner C et al (2024) In vitro quality parameters of whole blood-derived platelets pooled using two different platelet pooling sets and stored up to 7 days are similar. Transfusion 64(1):132–140

Article  CAS  PubMed  Google Scholar 

Fiedler SA, Boller K, Junker A-C, Kamp C, Hilger A, Schwarz W et al (2020) Evaluation of the in vitro function of platelet concentrates from pooled buffy coats or apheresis. Transfus Med Hemother 47(4):314–325

Article  PubMed  PubMed Central  Google Scholar 

Xie RF, Hu P, Li W, Ren YN, Yang J, Yang YM et al (2014) The effect of platelet-derived microparticles in stored apheresis platelet concentrates on polymorphonuclear leucocyte respiratory burst. Vox Sang 106(3):234–241

Article  CAS  PubMed  Google Scholar 

Agarwal P, Jain A, Elhence P, Verma A (2023) Are Buffy-coat pooled platelet concentrates an effective alternative to apheresis platelet concentrates? An in vitro analysis at a Tertiary Care Center in Northern India. Int J Appl Basic Med Res 13(3):175–179

Article  PubMed  PubMed Central  Google Scholar 

Singh RP, Marwaha N, Malhotra P, Dash S (2009) Quality assessment of platelet concentrates prepared by platelet rich plasma-platelet concentrate, buffy coat poor-platelet concentrate (BC-PC) and apheresis-PC methods. Asian J Transfus Sci 3(2):86

Article  CAS  PubMed  PubMed Central  Google Scholar 

Shrivastava M (2009) The platelet storage lesion. Transfus Apher Sci 41(2):105–113

Article  PubMed  Google Scholar 

Jacobs MR, Zhou B, Tayal A, Maitta RW (2024) Bacterial contamination of platelet products. Microorganisms 12(2):258

Article  PubMed  PubMed Central  Google Scholar 

Vit G, Klüter H, Wuchter P (2020) Platelet storage and functional integrity. J Lab Med 44(5):285–293

Article  Google Scholar 

Schrezenmeier H, Walther-Wenke G, Müller TH, Weinauer F, Younis A, Holland-Letz T et al (2007) Bacterial contamination of platelet concentrates: results of a prospective multicenter study comparing pooled whole blood-derived platelets and apheresis platelets. Transfusion 47(4):644–652

Article  PubMed  Google Scholar 

Comments (0)

No login
gif