Liu Z, Wang J, Li Z, Zhang G (2024) mRNA for Body Fluid and Individual Identification
Kader F, Ghai M, Olaniran AO (2020) Characterization of DNA methylation-based markers for human body fluid identification in forensics: a critical review. Int J Legal Med 134:1–20. https://doi.org/10.1007/s00414-019-02181-3
Dobay A (2019) Microbiome-based body fluid identification of samples exposed to indoor conditions. Forensic Science International
Wohlfahrt D, Tan-Torres AL, Green R et al (2023) A bacterial signature-based method for the identification of seven forensically relevant human body fluids. Forensic Sci International: Genet 65:102865. https://doi.org/10.1016/j.fsigen.2023.102865
Lin M-H (2016) Degraded RNA transcript stable regions (StaRs) as targets for enhanced forensic RNA body fluid identification. Forensic Science International
Liu Y, He H, Xiao Z-X et al (2021) A systematic analysis of miRNA markers and classification algorithms for forensic body fluid identification. Brief Bioinform 22:bbaa324. https://doi.org/10.1093/bib/bbaa324
Lee HY, Park MJ, Choi A et al (2012) Potential forensic application of DNA methylation profiling to body fluid identification. Int J Legal Med
Wu S, Turner KM, Nguyen N et al (2019) Circular ecDNA promotes accessible chromatin and high oncogene expression. Nature 575:699–703. https://doi.org/10.1038/s41586-019-1763-5
Article PubMed PubMed Central Google Scholar
Gaubatz JW (1990) Extrachromosomal circular DNAs and genomic sequence plasticity in eukaryotic cells. Mutat Research/DNAging 237:271–292. https://doi.org/10.1016/0921-8734(90)90009-G
Hotta Y, Bassel A (1965) Molecular size and circularity of dna in cells of mammals and higher plants. Proc Natl Acad Sci USA 53:356–362. https://doi.org/10.1073/pnas.53.2.356
Cox D, Yuncken C, Spriggs ArthurI (1965) Minute chromatin bodies in malignant tumours of childhood. Lancet 286:55–58. https://doi.org/10.1016/S0140-6736(65)90131-5
Cohen S (2001) A novel cell-free system reveals a mechanism of circular DNA formation from tandem repeats. Nucleic Acids Res 29:2542–2548. https://doi.org/10.1093/nar/29.12.2542
Article PubMed PubMed Central Google Scholar
Cohen S, Méchali M (2002) Formation of extrachromosomal circles from telomeric DNA in Xenopus laevis. EMBO Rep 3:1168–1174. https://doi.org/10.1093/embo-reports/kvf240
Article PubMed PubMed Central Google Scholar
Cohen S, Houben A, Segal D (2008) Extrachromosomal circular DNA derived from tandemly repeated genomic sequences in plants. Plant J 53:1027–1034. https://doi.org/10.1111/j.1365-313X.2007.03394.x
Cohen S, Yacobi K, Segal D (2003) Extrachromosomal circular DNA of Tandemly repeated genomic sequences in Drosophila. Genome Res 13:1133–1145. https://doi.org/10.1101/gr.907603
Article PubMed PubMed Central Google Scholar
Møller HD, Parsons L, Jørgensen TS et al (2015) Extrachromosomal circular DNA is common in yeast. Proc Natl Acad Sci USA 112. https://doi.org/10.1073/pnas.1508825112
Paulsen T, Kumar P, Koseoglu MM, Dutta A (2018) Discoveries of extrachromosomal circles of DNA in normal and Tumor cells. Trends Genet 34:270–278. https://doi.org/10.1016/j.tig.2017.12.010
Article PubMed PubMed Central Google Scholar
Kuttler F, Mai S (2007) Formation of non-random extrachromosomal elements during development, differentiation and oncogenesis. Sem Cancer Biol 17:56–64. https://doi.org/10.1016/j.semcancer.2006.10.007
Wang M, Chen X, Yu F et al (2021) Extrachromosomal Circular DNAs: origin, formation and emerging function in Cancer. Int J Biol Sci 17:1010–1025. https://doi.org/10.7150/ijbs.54614
Article PubMed PubMed Central Google Scholar
Yang L, Jia R, Ge T et al (2022) Extrachromosomal circular DNA: biogenesis, structure, functions and diseases. Sig Transduct Target Ther 7:342. https://doi.org/10.1038/s41392-022-01176-8
Dillon LW, Kumar P, Shibata Y et al (2015) Production of Extrachromosomal MicroDNAs is linked to Mismatch Repair pathways and Transcriptional Activity. Cell Rep 11:1749–1759. https://doi.org/10.1016/j.celrep.2015.05.020
Article PubMed PubMed Central Google Scholar
Hull RM, King M, Pizza G et al (2019) Transcription-induced formation of extrachromosomal DNA during yeast ageing. PLoS Biol 17:e3000471. https://doi.org/10.1371/journal.pbio.3000471
Article PubMed PubMed Central Google Scholar
Gresham D, Usaite R, Germann SM et al Adaptation to diverse nitrogen-limited environments by deletion or extrachromosomal element formation of the GAP1 locus
Turner KM, Deshpande V, Beyter D et al (2017) Extrachromosomal oncogene amplification drives tumour evolution and genetic heterogeneity. Nature 543:122–125. https://doi.org/10.1038/nature21356
Article PubMed PubMed Central Google Scholar
Li Z (2024) Extrachromosomal circular DNA (eccDNA): from carcinogenesis to drug resistance. Clinical and Experimental Medicine
Xu Z, He J, Han P et al (2023) Plasma extrachromosomal circular DNA is a pathophysiological hallmark of short-term intensive insulin therapy for type 2 diabetes. Clin Translational Med 13:e1437. https://doi.org/10.1002/ctm2.1437
Jiang X, Pan X, Li W et al (2023) Genome-wide characterization of extrachromosomal circular DNA in gastric cancer and its potential role in carcinogenesis and cancer progression. Cell Mol Life Sci 80:191. https://doi.org/10.1007/s00018-023-04838-0
Article PubMed PubMed Central Google Scholar
Zhu Q, Chen R, Kuang M et al Identification and characterization of extrachromosomal circular DNA in age-related osteoporosis
Li R, Wang Y, Li J, Zhou X (2022) Extrachromosomal circular DNA (eccDNA): an emerging star in cancer. Biomark Res 10:53. https://doi.org/10.1186/s40364-022-00399-9
Article PubMed PubMed Central Google Scholar
Kong X, Wan S, Chen T et al (2024) Increased serum extrachromosomal circular DNA SORBS1circle level is associated with insulin resistance in patients with newly diagnosed type 2 diabetes mellitus. Cell Mol Biol Lett 29:12. https://doi.org/10.1186/s11658-023-00530-0
Article PubMed PubMed Central Google Scholar
Luo X, Zhang L, Cui J et al (2023) Small extrachromosomal circular DNAs as biomarkers for multi-cancer diagnosis and monitoring. Clin Translational Med 13:e1393. https://doi.org/10.1002/ctm2.1393
Møller HD, Mohiyuddin M, Prada-Luengo I et al (2018) Circular DNA elements of chromosomal origin are common in healthy human somatic tissue. Nat Commun 9:1069. https://doi.org/10.1038/s41467-018-03369-8
Article PubMed PubMed Central Google Scholar
Arya M, Shergill IS, Williamson M et al (2005) Basic principles of real-time quantitative PCR. Expert Rev Mol Diagn
Lynch C (2023) Partial validation of multiplexed real-time quantitative PCR assays for forensic body fluid identification
Farzanehpour M Droplet digital PCR of viral DNA/RNA, current progress, challenges, and future perspectives
Li Z, Wang B, Liang H et al (2023) A three-stage eccDNA based molecular profiling significantly improves the identification, prognosis assessment and recurrence prediction accuracy in patients with glioma. Cancer Lett 574:216369. https://doi.org/10.1016/j.canlet.2023.216369
Lu W, Li F, Ouyang Y et al (2024) A comprehensive analysis of library preparation methods shows high heterogeneity of extrachromosomal circular DNA but distinct chromosomal amount levels reflecting different cell states
Kaczor-Urbanowicz KE, Kim Y, Li F et al (2018) Novel approaches for bioinformatic analysis of salivary RNA sequencing data for development. Bioinformatics 34:1–8. https://doi.org/10.1093/bioinformatics/btx504
Yeri AT Extracellular small RNA profiles from plasma, saliva, and urine of healthy subjects. Scientific REPOrTS
Gosch A, Banemann R, Dørum G et al (2024) Spitting in the wind?—The challenges of RNA sequencing for biomarker discovery from saliva. Int J Legal Med 138:401–412. https://doi.org/10.1007/s00414-023-03100-3
Comments (0)