Targeting the NLRP3 inflammasome as a novel therapeutic target for osteoarthritis

Ahmad R, Sylvester J, Ahmad M, Zafarullah M (2011) Involvement of H-Ras and reactive oxygen species in proinflammatory cytokine-induced matrix metalloproteinase-13 expression in human articular chondrocytes. Arch Biochem Biophys 507:350–355. https://doi.org/10.1016/J.ABB.2010.12.032

Article  PubMed  Google Scholar 

Allam R, Lawlor KE, Yu EC-W et al (2014) Mitochondrial apoptosis is dispensable for NLRP3 inflammasome activation but non-apoptotic caspase-8 is required for inflammasome priming. EMBO Rep 15:982. https://doi.org/10.15252/EMBR.201438463

Allen IC, Scull MA, Moore CB et al (2009) The NLRP3 inflammasome mediates in vivo innate immunity to influenza a virus through recognition of viral RNA. Immunity 30:556–565. https://doi.org/10.1016/j.immuni.2009.02.005

Article  PubMed  PubMed Central  Google Scholar 

Allen KD, Thoma LM, Golightly YM (2022) Epidemiology of osteoarthritis. Osteoarthritis Cartil 30:184–195. https://doi.org/10.1016/J.JOCA.2021.04.020

Article  Google Scholar 

Andreeva L, David L, Rawson S et al (2021) NLRP3 cages revealed by full-length mouse NLRP3 structure control pathway activation. Cell 184:6299-6312.e22. https://doi.org/10.1016/j.cell.2021.11.011

Article  PubMed  PubMed Central  Google Scholar 

Aubourg G, Rice SJ, Bruce-Wootton P, Loughlin J (2022) Genetics of osteoarthritis. Osteoarthritis Cartil 30:636–649. https://doi.org/10.1016/j.joca.2021.03.002

Article  Google Scholar 

Ayhan E, Kesmezacar H, Akgun I (2014) Intraarticular injections (corticosteroid, hyaluronic acid, platelet rich plasma) for the knee osteoarthritis. World J Orthop 5:351–361. https://doi.org/10.5312/wjo.v5.i3.351

Article  PubMed  PubMed Central  Google Scholar 

Bai H, Zhang Z, Liu L et al (2022) Activation of adenosine <scp>A3</scp> receptor attenuates progression of osteoarthritis through inhibiting the <scp>NLRP3</scp> /caspase-1/ <scp>GSDMD</scp> induced signalling. J Cell Mol Med 26:4230–4243. https://doi.org/10.1111/jcmm.17438

Article  PubMed  PubMed Central  Google Scholar 

Baldwin AG, Rivers-Auty J, Daniels MJD et al (2017) Boron-based inhibitors of the NLRP3 inflammasome. Cell Chem Biol 24:1321. https://doi.org/10.1016/J.CHEMBIOL.2017.08.011

Article  PubMed  PubMed Central  Google Scholar 

Bannuru RR, Schmid CH, Kent DM et al (2015) Comparative effectiveness of pharmacologic interventions for knee osteoarthritis. Ann Intern Med 162:46–51. https://doi.org/10.7326/M14-1231

Article  PubMed  Google Scholar 

Bauernfeind FG, Horvath G, Stutz A et al (2009) Cutting edge: NF-κB activating pattern recognition and cytokine receptors license NLRP3 inflammasome activation by regulating NLRP3 expression. J Immunol 183:787–791. https://doi.org/10.4049/JIMMUNOL.0901363

Article  PubMed  Google Scholar 

Bay-Jensen AC, Thudium CS, Mobasheri A (2018) Development and use of biochemical markers in osteoarthritis: current updatedate. Curr Opin Rheumatol 30:121–128. https://doi.org/10.1097/BOR.0000000000000467

Article  PubMed  Google Scholar 

Bedard K, Krause KH (2007) The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology. Physiol Rev 87:245–313. https://doi.org/10.1152/PHYSREV.00044.2005/ASSET/IMAGES/LARGE/Z9J0010724260009.JPEG

Article  PubMed  Google Scholar 

Booshehri LM, Hoffman HM (2019) CAPS and NLRP3. J Clin Immunol 39:277–286. https://doi.org/10.1007/S10875-019-00638-Z/TABLES/2

Article  PubMed  PubMed Central  Google Scholar 

Bougault C, Gosset M, Houard X et al (2012) Stress-induced cartilage degradation does not depend on the NLRP3 inflammasome in human osteoarthritis and mouse models. Arthritis Rheumatol 64:3972–3981. https://doi.org/10.1002/ART.34678

Article  Google Scholar 

Bredeck G, Busch M, Rossi A et al (2023) Inhalable Saharan dust induces oxidative stress, NLRP3 inflammasome activation, and inflammatory cytokine release. Environ Int 172:107732. https://doi.org/10.1016/J.ENVINT.2023.107732

Article  PubMed  Google Scholar 

Busso N, So A (2012) Microcrystals as DAMPs and their role in joint inflammation. Rheumatology 51:1154–1160. https://doi.org/10.1093/RHEUMATOLOGY/KER524

Article  PubMed  Google Scholar 

Cai X, Yuan S, Zeng Y et al (2021) New trends in pharmacological treatments for osteoarthritis. Front Pharmacol 12:645842. https://doi.org/10.3389/FPHAR.2021.645842/BIBTEX

Article  PubMed  PubMed Central  Google Scholar 

Chen W, Cheung OS (2021) Flexible face processing: holistic processing of facial identity is modulated by task-irrelevant facial expression. Vis Res 178:18–27. https://doi.org/10.1016/j.visres.2020.09.008

Article  PubMed  Google Scholar 

Cheng F, Yan FF, Liu YP et al (2019) Dexmedetomidine inhibits the NF-κB pathway and NLRP3 inflammasome to attenuate papain-induced osteoarthritis in rats. Pharm Biol 57:649–659. https://doi.org/10.1080/13880209.2019.1651874

Article  PubMed  PubMed Central  Google Scholar 

Chua MJ, Hart AJ, Mittal R et al (2017) Early mobilisation after total hip or knee arthroplasty: a multicentre prospective observational study. PLoS ONE 12:e0179820. https://doi.org/10.1371/JOURNAL.PONE.0179820

Article  PubMed  PubMed Central  Google Scholar 

Clavijo-Cornejo D, Martínez-Flores K, Silva-Luna K et al (2016) The overexpression of NALP3 inflammasome in knee osteoarthritis is associated with synovial membrane prolidase and NADPH oxidase 2. Oxid Med Cell Longev 2016:1472567. https://doi.org/10.1155/2016/1472567

Article  PubMed  PubMed Central  Google Scholar 

Coll RC, Hill JR, Day CJ et al (2019) MCC950 directly targets the NLRP3 ATP-hydrolysis motif for inflammasome inhibition. Nat Chem Biol 15:556–559. https://doi.org/10.1038/s41589-019-0277-7

Article  PubMed  Google Scholar 

Coll RC, Robertson AAB, Chae JJ et al (2015) A small-molecule inhibitor of the NLRP3 inflammasome for the treatment of inflammatory diseases. Nat Med 21:248–255. https://doi.org/10.1038/nm.3806

Article  PubMed  PubMed Central  Google Scholar 

Compan V, Baroja-Mazo A, López-Castejón G et al (2012) Cell volume regulation modulates NLRP3 inflammasome activation. Immunity 37:487–500. https://doi.org/10.1016/j.immuni.2012.06.013

Article  PubMed  Google Scholar 

Courties A, Berenbaum F, Sellam J (2019) The phenotypic approach to osteoarthritis: a look at metabolic syndrome-associated osteoarthritis. Jt Bone Spine 86:725–730. https://doi.org/10.1016/J.JBSPIN.2018.12.005

Article  Google Scholar 

Cui A, Li H, Wang D et al (2020) Global, regional prevalence, incidence and risk factors of knee osteoarthritis in population-based studies. EClinicalMedicine 29–30:100587. https://doi.org/10.1016/J.ECLINM.2020.100587

Article  PubMed  PubMed Central  Google Scholar 

Das S, Ghosh A, Ghosh P et al (2017) Sensitivity and specificity of ultrasonographic features of gout in intercritical and chronic phase. Int J Rheum Dis 20:887–893. https://doi.org/10.1111/1756-185X.12928

Article  PubMed  Google Scholar 

Dick MS, Sborgi L, Rühl S et al (2016) ASC filament formation serves as a signal amplification mechanism for inflammasomes. Nat Commun 7:1–13. https://doi.org/10.1038/ncomms11929

Article  Google Scholar 

Ding Y, Yu H, Ding L (2023) The involvement of NLRP3 inflammasome in herpes simplex virus infection and treatment. Future Virol 18:253–259. https://doi.org/10.2217/FVL-2023-0031

Article  Google Scholar 

Duan A, Ma Z, Liu W et al (2021) 1,25-Dihydroxyvitamin D inhibits osteoarthritis by modulating interaction between Vitamin D receptor and NLRP3 in macrophages. J Inflamm Res 14:6523–6542. https://doi.org/10.2147/JIR.S339670

Article  PubMed  PubMed Central  Google Scholar 

Duan R, Xie H, Liu Z-Z (2020) The role of autophagy in osteoarthritis. Front Cell Dev Biol 8:608388. https://doi.org/10.3389/fcell.2020.608388

Article  PubMed  PubMed Central  Google Scholar 

Comments (0)

No login
gif