Yamane S, Harada N, Hamasaki A, Muraoka A, Joo E, Suzuki K, Nasteska D, Tanaka D, Ogura M, Harashima S, Inagaki N. Effects of glucose and meal ingestion on incretin secretion in Japanese subjects with normal glucose tolerance. J Diabetes Investig. 2012;20:80–5.
Kendall DM, Cuddihy RM, Bergenstal RM. Clinical application of incretin-based therapy: therapeutic potential, patient selection and clinical use. Am J Med. 2009;122:S37–50.
Fukushima M, Suzuki H, Seino Y. Insulin secretion capacity in the development from normal glucose tolerance to type 2 diabetes. Diabetes Res Clin Pract. 2006;66S:S37–43.
Pankow JS, Kwan DK, Duncan BB, Schmidt MI, Couper DJ, Golden S, Ballantyne CM. Cardiometabolic risk in impaired fasting glucose and impaired glucose tolerance: the Atherosclerosis Risk in Communities Study. Diabetes Care. 2007;30:325–31.
Kondo Y, Harada N, Sozu T, Hamasaki A, Yamane S, Muraoka A, Harada T, Shibue K, Nasteska D, Joo E, Sasaki K, Inagaki N. A hospital-based cross-sectional study to develop an estimation formula for 2-h post-challenge plasma glucose for screening impaired glucose tolerance. Diabetes Res Clin Pract. 2013;101:218–25.
Article CAS PubMed Google Scholar
Nauck M, Stöckmann F, Ebert R, Creutzfeldt W. Reduced incretin effect in type 2 (non-insulin-dependent) diabetes. Diabetologia. 1986;29:46–52.
Article CAS PubMed Google Scholar
Hatoko T, Harada N, Tokumoto S, Yamane S, Ikeguchi-Ogura E, Kato T, Yasuda T, Tatsuoka H, Shimazu-Kuwahara S, Yabe D, Hayashi Y, Inagaki N. An analysis of intestinal morphology and incretin-producing cells using tissue optical clearing and 3-D imaging. Sci Rep. 2022;12:17530.
Article CAS PubMed PubMed Central Google Scholar
Smith EP, An Z, Wagner C, Lewis AG, Cohen EB, Li B, Mahbod P, Sandoval D, Perez-Tilve D, Tamarina N, Philipson LH, Stoffers DA, Seeley RJ, D’Alessio DA. The role of β cell glucagon-like peptide-1 signaling in glucose regulation and response to diabetes drugs. Cell Metab. 2014;19:1050–7.
Article CAS PubMed PubMed Central Google Scholar
Seino S, Sugawara K, Yokoi N, Takahashi H. β-cell signalling and insulin secretagogues: a path for improved diabetes therapy. Diabetes Obes Metab. 2017;19:22–9.
Article CAS PubMed Google Scholar
Hamasaki A, Harada N, Muraoka A, Yamane S, Joo E, Suzuki K, Inagaki N. The integrated incretin effect is reduced by both glucose intolerance and obesity in Japanese subjects. Front Endocrinol (Lausanne). 2024;15:1301352.
Oh TJ, Kim MY, Shin JY, Lee JC, Kim S, Park KS, Cho YM. The incretin effect in Korean subjects with normal glucose tolerance or type 2 diabetes. Clin Endocrinol (Oxf). 2014;80:221–7.
Article CAS PubMed Google Scholar
Vollmer K, Holst JJ, Baller B, Ellrichmann M, Nauck MA, Schmidt WE, Meier JJ. Predictors of incretin concentrations in subjects with normal, impaired, and diabetic glucose tolerance. Diabetes. 2008;57:678–87.
Article CAS PubMed Google Scholar
Harada N, Hamasaki A, Yamane S, Muraoka A, Joo E, Fujita K, Inagaki N. Plasma gastric inhibitory polypeptide and glucagon-like peptide-1 levels after glucose loading are associated with different factors in Japanese subjects. J Diabetes Investig. 2011;2:193–9.
Article CAS PubMed Google Scholar
Toft-Nielsen MB, Damholt MB, Madsbad S, Hilsted LM, Hughes TE, Michelsen BK, Holst JJ. Determinants of the impaired secretion of glucagon-like peptide-1 in type 2 diabetic patients. J Clin Endocrinol Metab. 2001;86:3717–23.
Article CAS PubMed Google Scholar
Calanna S, Christensen M, Holst JJ, Laferrère B, Gluud LL, Vilsbøll T, Knop FK. Secretion of glucagon-like peptide-1 in patients with type 2 diabetes mellitus: systematic review and meta-analyses of clinical studies. Diabetologia. 2013;56:965–72.
Article CAS PubMed PubMed Central Google Scholar
Calanna S, Christensen M, Holst JJ, Laferrère B, Gluud LL, Vilsbøll T, Knop FK. Secretion of glucose-dependent insulinotropic polypeptide in patients with type 2 diabetes: systematic review and meta-analysis of clinical studies. Diabetes Care. 2013;36:3346–52.
Article CAS PubMed PubMed Central Google Scholar
Xu G, Kaneto H, Laybutt DR, Duvivier-Kali VF, Trivedi N, Suzuma K, King GL, Weir GC, Bonner-Weir S. Downregulation of GLP-1 and GIP receptor expression by hyperglycemia: possible contribution to impaired incretin effects in diabetes. Diabetes. 2017;56:1551–8.
Oduori OS, Murao N, Shimomura K, Takahashi H, Zhang Q, Dou H, Sakai S, Minami K, Chanclon B, Guida C, Kothegala L, Tolö J, Maejima Y, Yokoi N, Minami Y, Miki T, Rorsman P, Seino S. Gs/Gq signaling switch in β cells defines incretin effectiveness in diabetes. J Clin Investig. 2020;130:6639–55.
Article CAS PubMed PubMed Central Google Scholar
Meier JJ, Nauck MA. Is the diminished incretin effect in type 2 diabetes just an epi-phenomenon of impaired beta-cell function? Diabetes. 2010;59:1117–25.
Article CAS PubMed PubMed Central Google Scholar
Højberg PV, Vilsbøll T, Rabøl R, Knop FK, Bache M, Krarup T, Holst JJ, Madsbad S. Four weeks of near-normalisation of blood glucose improves the insulin response to glucagon-like peptide-1 and glucose-dependent insulinotropic polypeptide in patients with type 2 diabetes. Diabetologia. 2009;52:199–207.
Drucker DJ, Sherman SI, Gorelick FS, Bergenstal RM, Sherwin RS, Buse JB. Incretin-based therapies for the treatment of type 2 diabetes: evaluation of the risks and benefits. Diabetes Care. 2010;33:428–33.
Article CAS PubMed PubMed Central Google Scholar
DeFronzo RA, Okerson T, Viswanathan P, Guan X, Holcombe JH, MacConell L. Effects of exenatide versus sitagliptin on postprandial glucose, insulin and glucagon secretion, gastric emptying, and caloric intake: a randomized, cross-over study. Curr Med Res Opin. 2008;24:2943–52.
Article CAS PubMed Google Scholar
Davies MJ, Aroda VR, Collins BS, Gabbay RA, Green J, Maruthur NM, Rosas SE, Del Prato S, Mathieu C, Mingrone G, Rossing P, Tankova T, Tsapas A, Buse JB. Management of hyperglycemia in type 2 diabetes, 2022. A consensus report by the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetologia. 2022;65:1925–66.
Article CAS PubMed PubMed Central Google Scholar
Bouchi R, Kondo T, Ohta Y, Goto A, Tanaka D, Satoh H, Yabe D, Nishimura R, Harada N, Kamiya H, Suzuki R, Yamauchi T, JDS Committee on Consensus Statement Development. A consensus statement from the Japan Diabetes Society (JDS): a proposed algorithm for pharmacotherapy in people with type 2 diabetes-2nd edition (English version). Diabetol Int. 2024;15:327–45.
Sun B, Willard FS, Feng D, Alsina-Fernandez J, Chen Q, Vieth M, Ho JD, Showalter AD, Stutsman C, Ding L, Suter TM, Dunbar JD, Carpenter JW, Mohammed FA, Aihara E, Brown RA, Bueno AB, Emmerson PJ, Moyers JS, Kobilka TS, Coghlan MP, Kobilka BK, Sloop KW. Structural determinants of dual incretin receptor agonism by tirzepatide. Proc Natl Acad Sci U S A. 2022;119: e2116506119.
Article CAS PubMed PubMed Central Google Scholar
Coskun T, Sloop KW, Loghin C, Alsina-Fernandez J, Urva S, Bokvist KB, Cui X, Briere DA, Cabrera O, Roell WC, Kuchibhotla U, Moyers JS, Benson CT, Gimeno RE, D’Alessio DA, Haupt A. LY3298176, a novel dual GIP and GLP-1 receptor agonist for the treatment of type 2 diabetes mellitus: from discovery to clinical proof of concept. Mol Metab. 2018;18:3–14.
Article CAS PubMed PubMed Central Google Scholar
Willard FS, Douros JD, Gabe MB, Showalter AD, Wainscott DB, Suter TM, Capozzi ME, van der Velden WJ, Stutsman C, Cardona GR, Urva S, Emmerson PJ, Holst JJ, D’Alessio DA, Coghlan MP, Rosenkilde MM, Campbell JE, Sloop KW. Tirzepatide is an imbalanced and biased dual GIP and GLP-1 receptor agonist. JCI Insight. 2020;5: e140532.
Article PubMed PubMed Central Google Scholar
El K, Douros JD, Willard FS, Novikoff A, Sargsyan A, Perez-Tilve D, Wainscott DB, Yang B, Chen A, Wothe D, Coupland C, Tschöp MH, Finan B, D’Alessio DA, Sloop KW, Müller TD, Campbell JE. The incretin co-agonist tirzepatide requires GIPR for hormone secretion from human islets. Nat Metab. 2023;5:945–54.
Comments (0)