Bray F, et al. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2024;74:229–63. https://doi.org/10.3322/caac.21834.
Huppert LA, Gumusay O, Idossa D, Rugo HS. Systemic therapy for hormone receptor-positive/human epidermal growth factor receptor 2-negative early stage and metastatic breast cancer. CA Cancer J Clin. 2023. https://doi.org/10.3322/caac.21777.
Waks AG, Winer EP. Breast cancer treatment: a review. JAMA. 2019;321:288–300. https://doi.org/10.1001/jama.2018.19323.
Article CAS PubMed Google Scholar
Breast cancer. Nat Rev Dis Primers 2019;5:67. https://doi.org/10.1038/s41572-019-0122-z.
Yin L, Duan J-J, Bian X-W, Yu S-C. Triple-negative breast cancer molecular subtyping and treatment progress. Breast Cancer Res. 2020;22:61. https://doi.org/10.1186/s13058-020-01296-5.
Article PubMed PubMed Central Google Scholar
Haque R, et al. Impact of breast cancer subtypes and treatment on survival: an analysis spanning two decades. Cancer Epidemiol Biomarkers Prev. 2012;21:1848–55. https://doi.org/10.1158/1055-9965.EPI-12-0474.
Article PubMed PubMed Central Google Scholar
Waks AG, Winer EP. Breast cancer treatment. JAMA. 2019;321:316–316. https://doi.org/10.1001/jama.2018.20751.
Lau KH, Tan AM, Shi Y. New and emerging targeted therapies for advanced breast cancer. Int J Mol Sci. 2022;23(4):2288.
Article CAS PubMed PubMed Central Google Scholar
Kunte S, Abraham J, Montero AJ. Novel HER2-targeted therapies for HER2-positive metastatic breast cancer. Cancer. 2020;126:4278–88. https://doi.org/10.1002/cncr.33102.
Article CAS PubMed Google Scholar
Swain SM, Shastry M, Hamilton ET. Targeting HER2-positive breast cancer: advances and future directions. Nat Rev Drug Discov. 2023;22:101–26. https://doi.org/10.1038/s41573-022-00579-0.
Article CAS PubMed Google Scholar
Slamon DJ, et al. Studies of the HER-2/neu proto-oncogene in human breast and ovarian cancer. Science. 1989;244:707–12. https://doi.org/10.1126/science.2470152.
Article CAS PubMed Google Scholar
Oh D-Y, Bang Y-J. HER2-targeted therapies — a role beyond breast cancer. Nat Rev Clin Oncol. 2020;17:33–48. https://doi.org/10.1038/s41571-019-0268-3.
Article CAS PubMed Google Scholar
Fu Z, Li S, Han S, Shi C, Zhang Y. Antibody drug conjugate: the “biological missile” for targeted cancer therapy. Signal Transduct Target Ther. 2022;7:93. https://doi.org/10.1038/s41392-022-00947-7.
Article CAS PubMed PubMed Central Google Scholar
Ye F, et al. Advancements in clinical aspects of targeted therapy and immunotherapy in breast cancer. Mol Cancer. 2023;22:105. https://doi.org/10.1186/s12943-023-01805-y.
Article CAS PubMed PubMed Central Google Scholar
Smolarz B, Nowak AZ, Romanowicz H. Breast cancer-epidemiology, classification, pathogenesis and treatment (review of literature). Cancers. 2022;14(10):2569.
Article CAS PubMed PubMed Central Google Scholar
Planes-Laine G, et al. PD-1/PD-L1 targeting in breast cancer: the first clinical evidences are emerging—a literature review. Cancers. 2019;11(7):1033.
Article CAS PubMed PubMed Central Google Scholar
Keam SJ. Trastuzumab deruxtecan: first approval. Drugs. 2020;80:501–8. https://doi.org/10.1007/s40265-020-01281-4.
Article CAS PubMed Google Scholar
Indini A, Rijavec E, Grossi F. Trastuzumab deruxtecan: changing the destiny of HER2 expressing solid tumors. Int J Mol Sci. 2021;22(9):4774. https://doi.org/10.3390/ijms22094774.
Article CAS PubMed PubMed Central Google Scholar
American Association for Cancer Research. SG improves OS in HR+/HER2− breast cancer. Cancer Discov. 2022;12:2714–5. https://doi.org/10.1158/2159-8290.Cd-nb2022-0061.
Yang H, Ganguly A, Cabral F. Inhibition of cell migration and cell division correlates with distinct effects of microtubule inhibiting drugs. J Biol Chem. 2010;285:32242–50. https://doi.org/10.1074/jbc.M110.160820.
Article CAS PubMed PubMed Central Google Scholar
Birrer MJ, Moore KN, Betella I, Bates RC. Antibody-drug conjugate-based therapeutics: state of the science. J Natl Cancer Inst. 2019;111:538–49. https://doi.org/10.1093/jnci/djz035.
Article CAS PubMed Google Scholar
Jin Y, Schladetsch MA, Huang X, Balunas MJ, Wiemer AJ. Stepping forward in antibody-drug conjugate development. Pharmacol Ther. 2022;229:107917. https://doi.org/10.1016/j.pharmthera.2021.107917.
Article CAS PubMed Google Scholar
Khongorzul P, Ling CJ, Khan FU, Ihsan AU, Zhang J. Antibody-drug conjugates: a comprehensive review. Mol Cancer Res. 2020;18:3–19. https://doi.org/10.1158/1541-7786.MCR-19-0582.
Article CAS PubMed Google Scholar
Yaghoubi S, et al. Potential drugs used in the antibody-drug conjugate (ADC) architecture for cancer therapy. J Cell Physiol. 2020;235:31–64. https://doi.org/10.1002/jcp.28967.
Article CAS PubMed Google Scholar
Staudacher AH, Brown MP. Antibody drug conjugates and bystander killing: is antigen-dependent internalisation required? Br J Cancer. 2017;117:1736–42. https://doi.org/10.1038/bjc.2017.367.
Article CAS PubMed PubMed Central Google Scholar
Green DR, Ferguson T, Zitvogel L, Kroemer G. Immunogenic and tolerogenic cell death. Nat Rev Immunol. 2009;9:353–63. https://doi.org/10.1038/nri2545.
Article CAS PubMed PubMed Central Google Scholar
Kepp O, Tesniere A, Zitvogel L, Kroemer G. The immunogenicity of tumor cell death. Curr Opin Oncol. 2009;21:71–6. https://doi.org/10.1097/CCO.0b013e32831bc375.
Article CAS PubMed Google Scholar
Nagata S, Tanaka MP. Programmed cell death and the immune system. Nat Rev Immunol. 2017;17:333–40. https://doi.org/10.1038/nri.2016.153.
Article CAS PubMed Google Scholar
Obeid M, et al. Calreticulin exposure dictates the immunogenicity of cancer cell death. Nat Med. 2007;13:54–61. https://doi.org/10.1038/nm1523.
Article CAS PubMed Google Scholar
Clarke C, Smyth MJ. Calreticulin exposure increases cancer immunogenicity. Nat Biotechnol. 2007;25:192–3. https://doi.org/10.1038/nbt0207-192.
Comments (0)