Treatment of Downbeat Nystagmus and Cerebellar Ataxia

Wagner JN, Glaser M, Brandt T, Strupp M. Downbeat nystagmus: aetiology and comorbidity in 117 patients. J Neurol Neurosurg Psychiatry. 2008;79:672.

Article  PubMed  CAS  Google Scholar 

Moscovich M, et al. Clinical evaluation of eye movements in spinocerebellar ataxias. J Neuro-Ophthalmol. 2015;35:16–21.

Article  CAS  Google Scholar 

Kim JS, et al. Ocular motor characteristics of different subtypes of spinocerebellar ataxia: Distinguishing features. Mov Disord. 2013;28:1271–7.

Article  PubMed  Google Scholar 

Strupp M, Zwergal A, Brandt T. Episodic Ataxia Type 2. Neurotherapeutics. 2007;4:267–73.

Article  PubMed  CAS  Google Scholar 

Choi K-D, Choi J-H. Episodic Ataxias: Clinical and genetic features. J Mov Disord. 2016;9:129–35.

Article  PubMed  PubMed Central  Google Scholar 

Nakamagoe K, Fujizuka N, Koganezawa T, Yamaguchi T, Tamaoka A. Downbeat nystagmus associated with damage to the medial longitudinal fasciculus of the pons: a vestibular balance control mechanism via the lower brainstem paramedian tract neurons. J Neurol Sci. 2012;328:98–101.

Article  Google Scholar 

Wagner J, et al. Downbeat nystagmus caused by a paramedian ponto-medullary lesion. J Neurol. 2009;256:1572–4.

Article  PubMed  Google Scholar 

Beeravolu LR, et al. Pearls & Oy-sters: “Not multiple sclerosis” and the changing face of HTLV-1 A case report of downbeat nystagmus. Neurology. 2009;72:e119–20.

Article  PubMed  CAS  Google Scholar 

Kim S-H, Kim S-S, Ha H, Lee S-H. X-linked adrenoleukodystrophy presenting with positional downbeat nystagmus. Neurology. 2016;86:2214–5.

Article  PubMed  Google Scholar 

Pinto WBVR, et al. Finger extension weakness and downbeat nystagmus motor neurone disease (FEWDON-MND). Pr Neurol. 2019;19:424.

Article  Google Scholar 

Halmagyi GM, Rudge P, Gresty MA, Sanders MD. Downbeating Nystagmus: A review of 62 cases. Arch Neurol. 1983;40:777–84.

Article  PubMed  CAS  Google Scholar 

Migliaccio AA, Halmagyi GM, McGarvie LA, Cremer PD. Cerebellar ataxia with bilateral vestibulopathy: description of a syndrome and its characteristic clinical sign. Brain. 2004;127:280–93.

Article  PubMed  Google Scholar 

Cortese A, et al. Biallelic expansion of an intronic repeat in RFC1 is a common cause of late-onset ataxia. Nat Genet. 2019;51:649–58.

Article  PubMed  CAS  PubMed Central  Google Scholar 

Traschütz A, et al. Frequency and phenotype of RFC1 repeat expansions in bilateral vestibulopathy. Neurology. 2023;101:e1001–13.

Article  PubMed  PubMed Central  Google Scholar 

Pellerin D, et al. Deep intronic FGF14 GAA repeat expansion in late-onset cerebellar ataxia. New Engl J Med. 2022;388:128–41.

Article  PubMed  Google Scholar 

Rafehi H, et al. An intronic GAA repeat expansion in FGF14 causes the autosomal-dominant adult-onset ataxia SCA50/ATX-FGF14. Am J Hum Genetics. 2023;110:105–19.

Article  CAS  Google Scholar 

Méreaux J-L, et al. Clinical and genetic keys to cerebellar ataxia due to FGF14 GAA expansions. eBioMedicine. 2024;99:104931.

Article  PubMed  Google Scholar 

Pellerin D, et al. Spinocerebellar ataxia 27B: A novel, frequent and potentially treatable ataxia. Clin Transl Med. 2024;14:e1504.

Article  PubMed  CAS  PubMed Central  Google Scholar 

Wirth T, et al. Natural history and phenotypic spectrum of GAA-FGF14 sporadic late-onset cerebellar ataxia (SCA27B). Mov Disord. 2023;38:1950–6.

Article  PubMed  CAS  Google Scholar 

Piarroux J, et al. FGF14-related episodic ataxia: delineating the phenotype of episodic ataxia type 9. Ann Clin Transl Neurol. 2020;7:565–72.

Article  PubMed  CAS  PubMed Central  Google Scholar 

Pellerin D, et al. GAA-FGF14 disease: defining its frequency, molecular basis, and 4-aminopyridine response in a large downbeat nystagmus cohort. eBioMedicine. 2024;102:105076.

Article  PubMed  CAS  PubMed Central  Google Scholar 

Strupp M, et al. A variation in FGF14 Is associated with downbeat nystagmus in a genome-wide association study. Cerebellum. 2020;19:348–57.

Article  PubMed  CAS  PubMed Central  Google Scholar 

Moster ML, et al. Alternating skew on lateral gaze (Bilateral abducting hypertropia). Ann Neurol. 1988;23:190–2.

Article  PubMed  CAS  Google Scholar 

Mistry EA, Lee AG, Lai EC. Teaching video neuroImages. Neurology. 2016;87:e109.

PubMed  Google Scholar 

Stahl JS. Eye movements of the murine P/Q calcium channel mutant rocker, and the impact of aging. J Neurophysiol. 2004;91:2066–78.

Article  PubMed  Google Scholar 

Jorge A, et al. Downbeat nystagmus in episodic ataxia type 1 associated with a novel KCNA1 mutation. Mov Disord. 2022;37:430–2.

Article  PubMed  CAS  Google Scholar 

Paulhus K, Ammerman L, Glasscock E. Clinical spectrum of KCNA1 mutations: New insights into episodic ataxia and epilepsy comorbidity. Int J Mol Sci. 2020;21:2802.

Article  PubMed  CAS  PubMed Central  Google Scholar 

Waters MF, et al. Mutations in voltage-gated potassium channel KCNC3 cause degenerative and developmental central nervous system phenotypes. Nat Genet. 2006;38:447–51.

Article  PubMed  CAS  Google Scholar 

Figueroa KP, et al. KCNC3: phenotype, mutations, channel biophysics—a study of 260 familial ataxia patients. Hum Mutat. 2010;31:191–6.

Article  PubMed  CAS  PubMed Central  Google Scholar 

Oliver KL, et al. Myoclonus epilepsy and ataxia due to KCNC1 mutation: Analysis of 20 cases and K+ channel properties. Ann Neurol. 2017;81:677–89.

Article  PubMed  CAS  Google Scholar 

Duarri A, et al. Spinocerebellar ataxia type 19/22 mutations alter heterocomplex Kv4.3 channel function and gating in a dominant manner. Cell Mol Life Sci: CMLS. 2015;72:3387–99.

Article  PubMed  CAS  PubMed Central  Google Scholar 

Tada Y, et al. Genetic screening for potassium channel mutations in Japanese autosomal dominant spinocerebellar ataxia. J Hum Genet. 2020;65:363–9.

Article  PubMed  CAS  Google Scholar 

Trimmer JS, Rhodes KJ. Localization of voltage-gated Ion channels IN mammalian brain. Annu Rev Physiol. 2004;66:477–519.

Article  PubMed  CAS  Google Scholar 

Bostock H, Sears TA, Sherratt RM. The effects of 4-aminopyridine and tetraethylammonium ions on normal and demyelinated mammalian nerve fibres. J Physiol. 1981;313:301–15.

Article  PubMed 

Comments (0)

No login
gif