Barkhane Z, Elmadi J, Satish Kumar L, Pugalenthi LS, Ahmad M, Reddy S. Multiple sclerosis and autoimmunity: a veiled relationship. Cureus. 2022;14:e24294. https://doi.org/10.7759/cureus.24294.
Article PubMed PubMed Central Google Scholar
Pirko I, Noseworthy JH. Demyelinating disorders of the central nervous system. Textbook of clinical neurology. 2007. pp. 1103–33. https://doi.org/10.1016/B978-141603618-0.10048-7.
Lassmann H. Multiple sclerosis pathology. Cold Spring Harb Perspect Med [Internet]. 20180301st ed. 2018;8. Available from: https://www.ncbi.nlm.nih.gov/pubmed/29358320. https://doi.org/10.1101/cshperspect.a028936. Accessed 19 Aug 2024.
University of California, San Francisco MS-EPIC Team, Cree BAC, Hollenbach JA, Bove R, Kirkish G, Sacco S, et al. Silent progression in disease activity-free relapsing multiple sclerosis. Ann Neurol. 2019;85:653–66. https://doi.org/10.1002/ana.25463.
Halder SK, Milner R. Hypoxia in multiple sclerosis; is it the chicken or the egg? Brain. 2021;144:402–10. https://doi.org/10.1093/brain/awaa427.
Acharjee S, Nayani N, Tsutsui M, Hill MN, Ousman SS, Pittman QJ. Altered cognitive-emotional behavior in early experimental autoimmune encephalitis–cytokine and hormonal correlates. Brain Behav Immun. 2013;33:164–72. https://doi.org/10.1016/j.bbi.2013.07.003.
Article CAS PubMed Google Scholar
Chanaday NL, Roth GA. Microglia and astrocyte activation in the frontal cortex of rats with experimental autoimmune encephalomyelitis. Neuroscience. 2016;314:160–9. https://doi.org/10.1016/j.neuroscience.2015.11.060.
Article CAS PubMed Google Scholar
Colgan SP, Eltzschig HK. Adenosine and hypoxia-inducible factor signaling in intestinal injury and recovery. Annu Rev Physiol. 2012;74:153–75. https://doi.org/10.1146/annurev-physiol-020911-153230. (2011/09/29 ed).
Article CAS PubMed Google Scholar
Ostergaard L. SARS CoV-2 related microvascular damage and symptoms during and after COVID-19: consequences of capillary transit-time changes, tissue hypoxia and inflammation. Physiol Rep. 2021;9:e14726. https://doi.org/10.14814/phy2.14726.
Article CAS PubMed PubMed Central Google Scholar
Østergaard L, Granfeldt A, Secher N, Tietze A, Iversen NK, Jensen MS, et al. Microcirculatory dysfunction and tissue oxygenation in critical illness. Acta Anaesthesiol Scand. 2015;59:1246–59. https://doi.org/10.1111/aas.12581.
Article CAS PubMed PubMed Central Google Scholar
Estato V, Nascimento A, Antunes B, Gomes F, Coelho L, Rangel R, et al. Cerebral microvascular dysfunction and inflammation are improved by centrally acting antihypertensive drugs in metabolic syndrome. Metab Syndr Relat Disord. 2017;15:26–35. https://doi.org/10.1089/met.2016.0085.
Article CAS PubMed Google Scholar
Nemoto EM, Bragin D. Low flow and microvascular shunts: a final common pathway to cerebrovascular disease: a working hypothesis. Adv Exp Med Biol. 2022;1395:123–6. https://doi.org/10.1007/978-3-031-14190-4_21.
Article CAS PubMed PubMed Central Google Scholar
Crumpler R, Roman RJ, Fan F. Capillary stalling: a mechanism of decreased cerebral blood flow in AD/ADRD. J Exp Neurol. 2021;2:149–53. https://doi.org/10.33696/neurol.2.048.
Article PubMed PubMed Central Google Scholar
Nathoo N, Jalal H, Natah SS, Zhang Q, Wu Y, Dunn JF. Hypoxia and inflammation-induced disruptions of the blood-brain and blood-cerebrospinal fluid barriers assessed using a novel T1-based MRI method. Acta Neurochir Suppl. 2016;121:23–8.
Pongratz V, Bussas M, Schmidt P, Grahl S, Gasperi C, El Husseini M, et al. Lesion location across diagnostic regions in multiple sclerosis. Neuroimage Clin. 2023;37:103311. https://doi.org/10.1016/j.nicl.2022.103311.
Article PubMed PubMed Central Google Scholar
Reid JK, Kuipers HF. She doesn’t even go here: the role of inflammatory astrocytes in CNS disorders. Front Cell Neurosci. 2021;15:704884. https://doi.org/10.3389/fncel.2021.704884.
Article CAS PubMed PubMed Central Google Scholar
Mishra A, Gordon GR, MacVicar BA, Newman EA. Astrocyte regulation of cerebral blood flow in health and disease. Cold Spring Harb Perspect Biol. 2024;16:a041354. https://doi.org/10.1101/cshperspect.a041354.
Article CAS PubMed Google Scholar
Argaw AT, Asp L, Zhang J, Navrazhina K, Pham T, Mariani JN, et al. Astrocyte-derived VEGF-A drives blood-brain barrier disruption in CNS inflammatory disease. J Clin Invest. 2012;122:2454–68. https://doi.org/10.1172/JCI60842.
Article CAS PubMed PubMed Central Google Scholar
Østergaard L, Aamand R, Karabegovic S, Tietze A, Blicher JU, Mikkelsen IK, et al. The role of the microcirculation in delayed cerebral ischemia and chronic degenerative changes after subarachnoid hemorrhage. J Cereb Blood Flow Metab. 2013;33:1825–37. https://doi.org/10.1038/jcbfm.2013.173.
Article CAS PubMed PubMed Central Google Scholar
Gottlieb SF, Smith JE, Neubauer RA. The etiology of multiple sclerosis: a new and extended vascular-ischemic model. Med Hypotheses. 1990;33:23–9.
Article CAS PubMed Google Scholar
Aboul-Enein F, Lassmann H. Mitochondrial damage and histotoxic hypoxia: a pathway of tissue injury in inflammatory brain disease? Acta Neuropathol. 2005;109:49–55. https://doi.org/10.1007/s00401-004-0954-8.
Article CAS PubMed Google Scholar
Mahad D, Ziabreva I, Lassmann H, Turnbull D. Mitochondrial defects in acute multiple sclerosis lesions. Brain. 2008;131:1722–35. https://doi.org/10.1093/brain/awn105. (2008/06/03 ed).
Article PubMed PubMed Central Google Scholar
Witte ME, Bø L, Rodenburg RJ, Belien JA, Musters R, Hazes T, et al. Enhanced number and activity of mitochondria in multiple sclerosis lesions. J Pathol. 2009;219:193–204. https://doi.org/10.1002/path.2582.
Dutta R, McDonough J, Yin X, Peterson J, Chang A, Torres T, et al. Mitochondrial dysfunction as a cause of axonal degeneration in multiple sclerosis patients. Ann Neurol. 2006;59:478–89. https://doi.org/10.1002/ana.20736.
Article CAS PubMed Google Scholar
Amorini AM, Nociti V, Petzold A, Gasperini C, Quartuccio E, Lazzarino G, et al. Serum lactate as a novel potential biomarker in multiple sclerosis. Biochim Biophys Acta. 2014;1842:1137–43. https://doi.org/10.1016/j.bbadis.2014.04.005.
Article CAS PubMed Google Scholar
Esmael A, Talaat M, Egila H, Eltoukhy K. Mitochondrial dysfunction and serum lactate as a biomarker for the progression and disability in MS and its correlation with the radiological findings. Neurol Res. 2021;43:582–90. https://doi.org/10.1080/01616412.2021.1893567.
Article CAS PubMed Google Scholar
Trapp BD, Stys PK. Virtual hypoxia and chronic necrosis of demyelinated axons in multiple sclerosis. Lancet Neurol. 2009;8:280–91.
Article CAS PubMed Google Scholar
Davies AL, Desai RA, Bloomfield PS, McIntosh PR, Chapple KJ, Linington C, et al. Neurological deficits caused by tissue hypoxia in neuroinflammatory disease. Ann Neurol. 2013;74:815–25. https://doi.org/10.1002/ana.24006.
Article CAS PubMed Google Scholar
Desai RA, Davies AL, Tachrount M, Kasti M, Laulund F, Golay X, et al. Cause and prevention of demyelination in a model multiple sclerosis lesion. Ann Neurol [Internet]. 2016/01/28 ed. 2016; Available from: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=26814844. https://doi.org/10.1002/ana.24607. Accessed 19 Aug 2024.
Nathoo N, Agrawal S, Wu Y, Haylock-Jacobs S, Yong VW, Foniok T, et al. Susceptibility-weighted imaging in the experimental autoimmune encephalomyelitis model of multiple sclerosis indicates elevated deoxyhemoglobin, iron deposition and demyelination. Mult Scler. 2013;19:721–31. https://doi.org/10.1177/1352458512460602.
Nathoo N, Rogers JA, Yong VW, Dunn JF. Detecting deoxyhemoglobin in spinal cord vasculature of the experimental autoimmune encephalomyelitis mouse model of multiple sclerosis using susceptibility MRI and hyperoxygenation. PLoS ONE.
Comments (0)