US Department of Health and Human Services. In: Rockville, editor. Health resources and services administration, Maternal and Child Health Bureau. Child health USA 2014. Maryland: US Department of Health and Human Services; 2006.
Volpe JJ. Brain injury in premature infants: a complex amalgam of destructive and developmental disturbances. Lancet Neurol. 2009;8:110–24.
Article PubMed PubMed Central Google Scholar
Saigal S, Doyle LW. An overview of mortality and sequelae of preterm birth from infancy to adulthood. Lancet. 2008;371:261–9.
Linsell L, Malouf R, Morris J, Kurinczuk JJ, Marlow N. Risk factor models for neurodevelopmental outcomes in children born very preterm or with very low birth weight: a systematic review of methodology and reporting. Am J Epidemiol. 2017;185:601–12.
Setanen S, Haataja L, Parkkola R, Lind A, Lehtonen L. Predictive value of neonatal brain MRI on the neurodevelopmental outcome of preterm infants by 5 years of age. Acta Paediatr. 2013;102:492–7.
Ibrahim J, Mir I, Chalak L. Brain imaging in preterm infants < 32 weeks gestation: a clinical review and algorithm for the use of cranial ultrasound and qualitative brain MRI. Pediatr Res. 2018;84:799–806.
Article CAS PubMed Google Scholar
Woodward LJ, Anderson PJ, Austin NC, Howard K, Inder TE. Neonatal MRI to predict neurodevelopmental outcomes in preterm infants. N Engl J Med. 2006;355:685–94.
Article CAS PubMed Google Scholar
Chugani HT. Positron emission tomography scanning: applications in newborns. Clin Perinatol. 1993;20:395–409.
Article CAS PubMed Google Scholar
Park JH, Kim CS, Won KS, Oh JS, Kim JS, Kim HW. Asymmetry of cerebral glucose metabolism in very low-birth-weight infants without structural abnormalities. PLoS ONE. 2017;12:e0186976.
Article PubMed PubMed Central Google Scholar
Bax M, Tydeman C, Flodmark O. Clinical and MRI correlates of cerebral palsy: the European cerebral Palsy Study. JAMA. 2006;296:1602–8.
Article CAS PubMed Google Scholar
Vincer MJ, Cake H, Graven M, Dodds L, McHugh S, Fraboni T. A population-based study to determine the performance of the cognitive adaptive Test/Clinical linguistic and auditory milestone scale to predict the Mental Developmental Index at 18 months on the Bayley Scales of Infant Development-II in very preterm infants. Pediatrics. 2005;116:e864–7.
Kim CY, Jung E, Lee BS, Kim KS, Kim EA. Validity of the Korean Developmental Screening Test for very-low-birth-weight infants. Korean J Pediatr. 2019;62:187–92.
Article PubMed PubMed Central Google Scholar
Petersen MC, Kube DA, Palmer FB. Classification of developmental delays. Semin Pediatr Neurol. 1998;5(1):2–14.
Article CAS PubMed Google Scholar
Anderson PJ, Burnett A. Assessing developmental delay in early childhood—concerns with the Bayley-III scales. Clin Neuropsychol. 2016;31(2):371–81.
Mikolajczyk K, Szabatin M, Rudnicki P, Grodzki M, Burger C. A JAVA environment for medical image data analysis: initial application for brain PET quantitation. Med Inf (Lond). 1998;23:207–14.
Tzourio-Mazoyer N, Landeau B, Papathanassiou D, Crivello F, Etard O, Delcroix N, et al. Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. NeuroImage. 2002;15:273–89.
Article CAS PubMed Google Scholar
Van Hus J, Jeukens-Visser M, Koldewijn K, Holman R, Kok J, Nollet F, Van Wassenaer‐Leemhuis A. Early intervention leads to long‐term developmental improvements in very preterm infants, especially infants with bronchopulmonary dysplasia. Acta Paediatr. 2016;105:773–81.
Maitre NL. Neurorehabilitation after neonatal intensive care: evidence and challenges. Arch Dis Child Fetal Neonatal Ed. 2015;100:F534–40.
Hilker R, Voges J, Weisenbach S, Kalbe E, Burghaus L, Ghaemi M, et al. Subthalamic nucleus stimulation restores glucose metabolism in associative and limbic cortices and in cerebellum: evidence from a FDG-PET study in advanced Parkinson’s disease. J Cereb Blood Flow Metab. 2004;24:7–16.
Article CAS PubMed Google Scholar
Kerrigan JF, Chugani HT, Phelps ME. Regional cerebral glucose metabolism in clinical subtypes of cerebral palsy. Pediatr Neurol. 1991;7:415–25.
Article CAS PubMed Google Scholar
Granert O, Drzezga AE, Boecker H, Perneczky R, Kurz A, Gotz J, et al. Metabolic topology of neurodegenerative disorders: influence of cognitive and motor deficits. J Nucl Med. 2015;56:1916–21.
Wang F, Lian C, Wu Z, Zhang H, Li T, Meng Y, et al. Developmental topography of cortical thickness during infancy. Proc Natl Acad Sci U S A. 2019;116:15855–60.
Article CAS PubMed PubMed Central Google Scholar
Arce-McShane FI, Ross CF, Takahashi K, Sessle BJ, Hatsopoulos NG. Primary motor and sensory cortical areas communicate via spatiotemporally coordinated networks at multiple frequencies. Proc Natl Acad Sci U S A. 2016;113:5083–8.
Article CAS PubMed PubMed Central Google Scholar
Rahkonen P, Nevalainen P, Lauronen L, Pihko E, Lano A, Vanhatalo S, et al. Cortical somatosensory processing measured by magnetoencephalography predicts neurodevelopment in extremely low-gestational-age infants. Pediatr Res. 2013;73:763–71.
Uddin LQ, Nomi JS, Hebert-Seropian B, Ghaziri J, Boucher O. Structure and function of the human insula. J Clin Neurophysiol. 2017;34:300–6.
Article PubMed PubMed Central Google Scholar
Wolff M, Vann SD. The cognitive thalamus as a gateway to mental representations. J Neurosci. 2019;39:3–14.
Article CAS PubMed PubMed Central Google Scholar
Evrard HC. The organization of the primate insular cortex. Front Neuroanat. 2019;13:43.
Article CAS PubMed PubMed Central Google Scholar
Cacciatore M, Grasso EA, Tripodi R, Chiarelli F. Impact of glucose metabolism on the developing brain. Front Endocrinol (Lausanne). 2022;13:1047545.
Jeong H, Chung YA, Ma J, et al. Diverging roles of the anterior insula in trauma-exposed individuals vulnerable or resilient to posttraumatic stress disorder. Sci Rep. 2019;9(1):15539.
Article PubMed PubMed Central Google Scholar
Jakab A, Natalucci G, Koller B, Tuura R, Rüegger C, Hagmann C. Mental development is associated with cortical connectivity of the ventral and nonspecific thalamus of preterm newborns. Brain Behav. 2020;10(10).
Niemarkt HJ, Andriessen P, Peters CH, Pasman JW, Zimmermann LJ, Bambang Oetomo S. Quantitative analysis of maturational changes in EEG background activity in very preterm infants with a normal neurodevelopment at 1 year of age. Early Hum Dev. 2010;86:219–24.
Article CAS PubMed Google Scholar
Soma T, Momose T, Takahashi M, Koyama K, Kawai K, Murase K, Ohtomo K. Usefulness of extent analysis for statistical parametric mapping with asymmetry index using inter-ictal FGD-PET in mesial temporal lobe epilepsy. Ann Nucl Med. 2012;26:319–26.
Hintz SR, Barnes PD, Bulas D, Slovis TL, Finer NN, Wrage LA, et al. Neuroimaging and neurodevelopmental outcome in extremely preterm infants. Pediatrics. 2015;135:e32–42.
Comments (0)