Hayflick, L. The limited in vitro lifetime of human diploid cell strains. Exp. Cell Res. 37, 614–636 (1965).
Article CAS PubMed Google Scholar
Hayflick, L. & Moorhead, P. S. The serial cultivation of human diploid cell strains. Exp. Cell Res. 25, 585–621 (1961). This article is a pioneering study that defines the concept of cellular senescence.
Article CAS PubMed Google Scholar
d’Adda di Fagagna, F. et al. A DNA damage checkpoint response in telomere-initiated senescence. Nature 426, 194–198 (2003).
Serrano, M., Lin, A. W., McCurrach, M. E., Beach, D. & Lowe, S. W. Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a. Cell 88, 593–602 (1997).
Article CAS PubMed Google Scholar
Chang, B. D. et al. Role of p53 and p21waf1/cip1 in senescence-like terminal proliferation arrest induced in human tumor cells by chemotherapeutic drugs. Oncogene 18, 4808–4818 (1999).
Article CAS PubMed Google Scholar
Schmitt, C. A. et al. A senescence program controlled by p53 and p16INK4a contributes to the outcome of cancer therapy. Cell 109, 335–346 (2002). Together with Chang et al. (1999), this work describes the concept of TIS in human cells and mouse models for the first time.
Article CAS PubMed Google Scholar
Acosta, J. C. et al. A complex secretory program orchestrated by the inflammasome controls paracrine senescence. Nat. Cell Biol. 15, 978–990 (2013).
Article CAS PubMed PubMed Central Google Scholar
Lee, S. et al. Virus-induced senescence is a driver and therapeutic target in COVID-19. Nature 599, 283–289 (2021).
Article CAS PubMed Google Scholar
Di Micco, R., Krizhanovsky, V., Baker, D. & d’Adda di Fagagna, F. Cellular senescence in ageing: from mechanisms to therapeutic opportunities. Nat. Rev. Mol. Cell Biol. 22, 75–95 (2021).
Storer, M. et al. Senescence is a developmental mechanism that contributes to embryonic growth and patterning. Cell 155, 1119–1130 (2013).
Article CAS PubMed Google Scholar
Munoz-Espin, D. et al. Programmed cell senescence during mammalian embryonic development. Cell 155, 1104–1118 (2013). Together with Storer et al. (2013), this work is the first study to describe developmental senescence.
Article CAS PubMed Google Scholar
Krizhanovsky, V. et al. Senescence of activated stellate cells limits liver fibrosis. Cell 134, 657–667 (2008).
Article CAS PubMed PubMed Central Google Scholar
Michaloglou, C. et al. BRAFE600-associated senescence-like cell cycle arrest of human naevi. Nature 436, 720–724 (2005).
Article CAS PubMed Google Scholar
Braig, M. et al. Oncogene-induced senescence as an initial barrier in lymphoma development. Nature 436, 660–665 (2005).
Article CAS PubMed Google Scholar
Chen, Z. et al. Crucial role of p53-dependent cellular senescence in suppression of PTEN-deficient tumorigenesis. Nature 436, 725–730 (2005).
Article CAS PubMed PubMed Central Google Scholar
Collado, M. et al. Tumour biology: senescence in premalignant tumours. Nature 436, 642 (2005).
Article CAS PubMed Google Scholar
Baker, D. J. et al. Naturally occurring p16Ink4a-positive cells shorten healthy lifespan. Nature 530, 184–189 (2016). This article identifies the beneficial effects of senolysis in naturally aged mouse models.
Article CAS PubMed PubMed Central Google Scholar
Serrano, M. et al. Role of the INK4a locus in tumor suppression and cell mortality. Cell 85, 27–37 (1996).
Article CAS PubMed Google Scholar
Krishnamurthy, J. et al. Ink4a/Arf expression is a biomarker of aging. J. Clin. Invest. 114, 1299–1307 (2004).
Article CAS PubMed PubMed Central Google Scholar
Sharpless, N. E. & Sherr, C. J. Forging a signature of in vivo senescence. Nat. Rev. Cancer 15, 397–408 (2015).
Article CAS PubMed Google Scholar
Kaplon, J. et al. A key role for mitochondrial gatekeeper pyruvate dehydrogenase in oncogene-induced senescence. Nature 498, 109–112 (2013).
Article CAS PubMed Google Scholar
Kondoh, H. et al. Glycolytic enzymes can modulate cellular life span. Cancer Res. 65, 177–185 (2005).
Article CAS PubMed Google Scholar
Young, A. R. et al. Autophagy mediates the mitotic senescence transition. Genes. Dev. 23, 798–803 (2009).
Article CAS PubMed PubMed Central Google Scholar
Chandra, T. & Narita, M. High-order chromatin structure and the epigenome in SAHFs. Nucleus 4, 23–28 (2013).
Article PubMed PubMed Central Google Scholar
Coppe, J. P., Desprez, P. Y., Krtolica, A. & Campisi, J. The senescence-associated secretory phenotype: the dark side of tumor suppression. Annu. Rev. Pathol. 5, 99–118 (2010).
Article CAS PubMed PubMed Central Google Scholar
Kang, T. W. et al. Senescence surveillance of pre-malignant hepatocytes limits liver cancer development. Nature 479, 547–551 (2011).
Article CAS PubMed Google Scholar
Xue, W. et al. Senescence and tumour clearance is triggered by p53 restoration in murine liver carcinomas. Nature 445, 656–660 (2007). Together with Kang et al. (2011), this work is the first study to describe immune surveillance of SnCs.
Article CAS PubMed PubMed Central Google Scholar
Xu, M. et al. Senolytics improve physical function and increase lifespan in old age. Nat. Med. 24, 1246–1256 (2018).
Article CAS PubMed PubMed Central Google Scholar
Munoz-Espin, D. & Serrano, M. Cellular senescence: from physiology to pathology. Nat. Rev. Mol. Cell Biol. 15, 482–496 (2014).
Article CAS PubMed Google Scholar
Jun, J. I. & Lau, L. F. The matricellular protein CCN1 induces fibroblast senescence and restricts fibrosis in cutaneous wound healing. Nat. Cell Biol. 12, 676–685 (2010).
Article CAS PubMed PubMed Central Google Scholar
Demaria, M. et al. An essential role for senescent cells in optimal wound healing through secretion of PDGF-AA. Dev. Cell 31, 722–733 (2014).
Article CAS PubMed PubMed Central Google Scholar
Ritschka, B. et al. The senescence-ass
Comments (0)